- MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications

- MobileNetV2: Inverted Residuals and Linear
Bottlenecks

Daniyar Turmukhambetov

Network Compression efforts

- Distillation: Big teacher network, small student network. Student gets to better
local minima by trying to match teacher predictions/logits.

- Weight pruning, quantization, Huffman coding etc.. Compress network size
(1-10 Mb instead of 500Mb for VGG). May not affect run-time speed, depends
on hardware.

- Architecture search: use evolutionary algorithms, reinforcement learning, etc.
to find the best architecture for a given task. Naive approaches are just a
massive hyper-opt.

- Use factorized operations: Approximate expensive ops with a sequence of
cheaper ops. For example, one of ideas in VGG: two successive 3x3
convolutions are roughly equivalent to a single 5x5 convolution.

MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications

Aim: reduce computations in convolutional layers.

Computation cost is measured with the number of multiply-adds (MAdds).

A standard convolutional layer takes as input a Dg X
Sta nda rd CO nvol utlon Dr x M feature map F and produces a Dr X Dp x N
feature map G where D is the spatial width and height
of a square input feature map', M is the number of input
channels (input depth), D is the spatial width and height of
a square output feature map and NN is the number of output
channel (output depth).
M The standard convolutional layer is parameterized by
convolution kernel K of size Dg X D X M x N where D
e is the spatial dimension of the kernel assumed to be square
and M is number of input channels and NV is the number of
output channels as defined previously.

Dy il The output feature map for standard convolution assum-

ing stride one and padding is computed as:
(a) Standard Convolution Filters

Giln = Z Kiimn Frtri—114+i-1,m (1)

i,5,m

Standard convolutions have the computational cost of:

Dg -Dg-M-N-Dp-Dp 2)

Depth-wise separable convolution

DK " Enm

DK <—M—->

(b) Depthwise Convolutional Filters

Y/ /&4

<—N—>

(¢) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

Depthwise convolution with one filter per input channel
(input depth) can be written as:

Grim = ZKi,j,m Brgoipi—tim 3)

where K is the depthwise convolutional kernel of size
Dk x Dg x M where the my,, filter in K is applied to
the my;, channel in F to produce the m;; channel of the
filtered output feature map G.

Depthwise convolution has a computational cost of:

Dg -Dg-M-Dpg-Dp 4
Depthwise separable convolutions cost:

Dg-Dg-M-Dp-Dp+M-N-Dp-Dr (5)

(a) Regular (b) Separable

Regular Convolution Separable Convolution Block

By expressing convolution as a two step process of filter-
ing and combining we get a reduction in computation of:

Dg -Dgk-M - -Dp-Dp+M-N-Dpg-Dp
Dg-Dg-M-N-Dp-Dp
L .

N
MobileNet uses 3 x 3 depthwise separable convolutions
which uses between 8 to 9 times less computation than stan-
dard convolutions at only a small reduction in accuracy as

seen in Section 4.
D

Further computation reduction

Width multiplier i.e. number of
channels in each layer.
(Assumes the number of
channels doubles every layer)
Resolution Multiplier i.e. The
starting resolution of the input
image.

We can now express the computational cost for the core
layers of our network as depthwise separable convolutions
with width multiplier a and resolution multiplier p:

DK-DK~01M-pDF'pDF+OtM'01N-pDF-pDF (7)

where p € (0, 1] which is typically set implicitly so that
the input resolution of the network is 224, 192, 160 or 128.
p = 1 is the baseline MobileNet and p < 1 are reduced
computation MobileNets. Resolution multiplier has the ef-
fect of reducing computational cost by p?.

Implementation

Table 1. MobileNet Body Architecture

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise

3x3 Conv 3x3 Depthwise Conv
BN BN
RelLU RelLU
1x1 é:onv
BN
ReILU

and Pointwise layers followed by batchnorm and ReLU.

Type / Stride Filter Shape Input Size
Conv /s2 I X Jx3 %32 224 %224 %3
Conv dw / sl 3 X3 x32dw 112 %:112:% 32
Conv /sl 1x1x32x64 112 %1125 32
Conv dw / s2 3 X3 x64dw 112 %112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 3 x3x 128 dw 56 x 56 x 128
Conv /sl 1 x1x128 x 256 28 x 28 x 128
Conv dw / sl 3 X 3 X 256 dw 28 x 28 x 256
Conv /sl 1 x1x256 x 256 28 x 28 x 256
Conv dw / s2 3 X 3 x 256 dw 28 x 28 x 256
Conv /sl 1.5 1% 286:% 512 14 x 14 x 256
5% Convdw /sl | 3 x3 x512dw 14 x 14 x 512
Conv /sl 1x1x512x%x 512 14 x 14 x 512
Conv dw / s2 3 x3x512dw 14 x 14 x 512
Conv /sl 1x1x512x1024 T X7 512
Conv dw / s2 3 x 3 x 1024 dw T % T %1024
Conv /sl 1x1x1024 x 1024 | 7 x 7 x 1024
Avg Pool / sl Pool 7 x 7 7 x7x 1024
FC/sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x1x 1000

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
Conv MobileNet 71.7% 4866 29.3
MobileNet 70.6% 569 4.2

Table 5. Narrow vs Shallow MobileNet

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
0.75 MobileNet 68.4% 325 2.6
Shallow MobileNet 65.3% 307 29

Table 6. MobileNet Width Multiplier

Width Multiplier ImageNet Million Million
Accuracy Mult-Adds Parameters

1.0 MobileNet-224 70.6% 569 4.2
0.75 MobileNet-224 68.4% 325 2.6
0.5 MobileNet-224 63.7% 149 13
0.25 MobileNet-224 50.6% 41 0.5

Table 7. MobileNet Resolution

Resolution ImageNet Million Million
Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
1.0 MobileNet-192 69.1% 418 4.2
1.0 MobileNet-160 67.2% 290 4.2

1.0 MobileNet-128 64.4% 186 4.2

Table 8. MobileNet Comparison to Popular Models

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

Table 9. Smaller MobileNet Comparison to Popular Models

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
0.50 MobileNet-160 60.2% 76 1.32
Squeezenet 57.5% 1700 1.25
AlexNet 57.2% 720 60

Table 14. MobileNet Distilled from FaceNet

Model le-4 Million Million
Accuracy Mult-Adds Parameters
FaceNet [25] 83% 1600 7.3
1.0 MobileNet-160 79.4% 286 4.9
1.0 MobileNet-128 78.3% 185 S35
0.75 MobileNet-128 75.2% 166 34
0.75 MobileNet-128 72.5% 108 3.8

MobileNetV2: Inverted Residuals and Linear
Bottlenecks

Aim: reduce computations in convolutional layers and use skip connections.

Mobilenets v2

(¢) Separable with linear (d) Bottleneck with ex-
bottleneck pansion layer

Bottleneck Convolution Expansion Convolution block

P8
e ‘A
¥ M £
A y
4D 1 "
Al
i
/v .
. Dwise Wy |
J¥ / .
(([P / '
VAl Z
7 s
1" &
v AL
i %

Figure 2: Evolution of separable convolution blocks. The
diagonally hatched texture indicates layers that do not contain
non-linearities. The last (lightly colored) layer indicates the
beginning of the next block. Note: 2d and 2c are equivalent
blocks when stacked. Best viewed in color.

Inverted-residual block

(a) Residual block (b) Inverted residual block

'lu 'lu | lu6, Dwise
t

Figure 3: The difference between residual block [&, 30]
and inverted residual. Diagonally hatched layers do not
use non-linearities. We use thickness of each block to
indicate its relative number of channels. Note how clas-
sical residuals connects the layers with high number of
channels, whereas the inverted residuals connect the bot-
tlenecks. Best viewed in color.

Why linear bottleneck?

Input | Operator | Output 7 ¢

70,

hxwxk | 1x1conv2d, ReLU6 | h x w X (tk) [

70|

{69

s

h x w x tk 3x3 dwise S=s, ReLLU6 % X % X (tk) o e — Shortcut between bottlenecks
= 67 — Linear botleneck 7 —— Shortcut between expansions
% X % X tk llnear 1X1 COI],VZd % X % X k’ — Relu6 in bottleneck) / = No residual
g T 3 3 7 5 3 T 3 3 3 5 3

Table 1: Bottleneck residual block transforming from & (a) Impact of non-linearity in (b) Impact of variations in
to k' channels, with stride s, and expansion factor ¢. the bottleneck layer. residual blocks.
Figurf? 1:. Exarflples of ReLU tr‘ansfonx}ation§ of
S gl e vl Figure 6: The impact of non-linearities and various
an n-dimensional space using random matrix 7" followed by . .
e L S T o T types of shortcut (residual) connections.

certain points of the manifold collapse into each other, while
for n = 15 to 30 the transformation is highly non-convex.

Input Output/dim=2 Output/dim=3 Output/dim=5 Output/dim=15 Output/dim=30

Implementation

Input | Operator | Output

hxwxk 1x1 conv2d, ReLU6 | h x w x (tk)
hxwx tk | 3x3 dwises=s, ReLU6 | % x ¥ x (tk)
hx ¥ xtk | linear 1x1 conv2d x 2 x K

S

o |
[|

Table 1: Bottleneck residual block transforming from k
to k' channels, with stride s, and expansion factor ¢.

Input | Operator |t| ¢ |n]|s
2242 x 3 conv2d - 32 [1]2
1122 x 32 bottleneck | 1| 16 |1 |1
1122 x 16 bottleneck |6 | 24 |2 |2
562 x 24 bottleneck | 6 | 32 |3 |2
282 x 32 bottleneck | 6 | 64 |4 |2
142 x 64 bottleneck | 6| 96 |3 |1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 |1 |1
72 x 320 conv2d 1x1 | - | 1280 | 1 | 1
72 x 1280 | avgpool 7x7 | - - 1] -

1x1x1280 | conv2d 1x1 | - k -

Table 2: MobileNetV2 : Each line describes a sequence
of 1 or more identical (modulo stride) layers, repeated
n times. All layers in the same sequence have the same
number ¢ of output channels. The first layer of each
sequence has a stride s and all others use stride 1. All
spatial convolutions use 3 X 3 kernels. The expansion
factor ¢ is always applied to the input size as described
in Table 1.

Memory efficient inference

Idea: Do not expand every layer, expand
only a fraction at a time.

Size | MobileNetV1 | MobileNetV2 | ShuffleNet
(2x,g=3)
112x112 1/0(1) 1/0(1) 1/0(1)
56x56 128/800 32/200 48/300
28x28 256/400 64/100 | 400/600K
14x14 512/200 160/62 800/310
7x7 1024/199 320/32 1600/156
1x1 102412 1280/2 1600/3
max | 800K | 200K | 600K

Table 3: The max number of channels/memory (in
Kb) that needs to be materialized at each spatial res-
olution for different architectures. We assume 16-bit
floats for activations. For ShuffleNet, we use 2z,g =
3 that matches the performance of MobileNetV1 and
MobileNetV?2. For the first layer of MobileNetV2 and
ShuffleNet we can employ the trick described in Sec-
tion 5 to reduce memory requirement. Even though
ShuffleNet employs bottlenecks elsewhere, the non-
bottleneck tensors still need to be materialized due to the
presence of shortcuts between non-bottleneck tensors.

Results

Network | Top1 | Params MAdds | CPU
MobileNetV1 706 | 42M 575M | 113ms
ShuffleNet (1.5) 715 | 34M 292M -

ShuffleNet (x2) 737 | 54M 524M .

NasNet-A 740 | 53M 564M | 183ms
MobileNetV2 720 | 34M 300M | 75ms
MobileNetV2 (1.4) | 747 | 69M 585M | 143ms

Table 4: Performance on ImageNet, comparison for dif-
ferent networks. As is common practice for ops, we
count the total number of Multiply-Adds. In the last
column we report running time in milliseconds (ms) for
a single large core of the Google Pixel 1 phone (using
TF-Lite). We do not report ShuffleNet numbers as effi-
cient group convolutions and shuffling are not yet sup-
ported.

Network | mAP | Params MAdd | CPU
SSD300[34] 232 | 36.IM 35.2B -
SSD512[34] 26.8 | 36.1IM 99.5B -
YOLOV2[35] 21.6 | 50.7M 17.5B

MNet V1 + SSDLite | 222 | 5IM 13B | 270ms
MNet V2 + SSDLite | 22.1 | 43M 08B | 200ms

Table 6: Performance comparison of MobileNetV2 +
SSDLite and other realtime detectors on the COCO
dataset object detection task. MobileNetV2 + SSDL.ite
achieves competitive accuracy with significantly fewer
parameters and smaller computational complexity. All
models are trained on t rainval35k and evaluated on
test—-dev. SSD/YOLOvV2 numbers are from [35]. The
running time is reported for the large core of the Google
Pixel 1 phone, using an internal version of the TF-Lite
engine.

77.5¢
75.0F
72.5¢
70.0+
67.5+

ES

© 65.0F
~ 62,5}
a
O 60.0+
~ 57.5¢+
§ 55.0+
5 s2.5} :
by g0 3 0] LIRS SR
<47.5_
FL 0| S—
A6 Lssinssssitrusnsnonsa
400} oo
[7 L . SU—

54

o0g 96x96

mEg 128x128
pog 160x160
mEg 192x192
o0m 224x224
xxx NasNet
e®¢ MobileNetV1
++4+ ShuffleNet

510 15 20 3040 50 75100 150 200 300 400 500 600

Multiply-Adds, Millions

Figure 5: Performance curve of MobileNetV2 vs

MobileNetV1, ShuffleNet, NAS. For our networks we

use multipliers 0.35, 0.5, 0.75, 1.0 for all resolutions,
and additional 1.4 for for 224. Best viewed in color.

Network | OS ASPP MF | mIOU Params MAdds

MNet V1 16 v 75.29 11.15M 14.25B
8 v v | 7856 11.15M 941.9B

MNet V2* | 16 v 75.70 4.52M 5.8B

8 v v | 7842 452M 387B

MNet V2* | 16 7532 211IM 2.75B
8 v | 7733 211M 152.6B

ResNet-101 | 16 v 8049 58.16M 81.0B
8 v v | 8270 58.16M 4870.6B

Table 7: MobileNet + DeepLabv3 inference strategy
on the PASCAL VOC 2012 validation set. MNet
V2*: Second last feature map is used for DeepLabv3
heads, which includes (1) Atrous Spatial Pyramid Pool-
ing (ASPP) module, and (2) 1 x 1 convolution as well
as image-pooling feature. OS: output_stride that con-
trols the output resolution of the segmentation map. MF:
Multi-scale and left-right flipped inputs during test. All
of the models have been pretrained on COCO. The po-
tential candidate for on-device applications is shown in
bold face. PASCAL images have dimension 512 x 512
and atrous convolution allows us to control output fea-
ture resolution without increasing the number of param-
eters.

Tensorflow repo with pre-trained models

https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH
50X FEWER PARAMETERS AND <0.5MB MODEL
SIZE

quees

S
1x1 convolution filters
ﬂ' ﬂ' ﬂ'

1x1 and 3x3 convolution filters

,,,,)))) Yo Xo) YD
»y o) b YD y 3 Jo Xo IO
YOO b YOO YN

YO

) XS)

) A6 J
ReLU*

Figure 1: Microarchitectural view: Organization of convolution filters in the Fire module. In this
example, s1;1 = 3, €11 = 4, and eg,3 = 4. We illustrate the convolution filters but not the
activations.

Shufflenet: An extremely efficient convolutional
neural network for mobile devices

js<——Channels———> jf<——Channels >

Input | | | | | |

GConv1 ‘
\

Feature } []

Channels—————>|

1 A

[

Channél
Shufﬂe '

DIW F

GConv2
|
\

Output ‘
(a) (b) (c)

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv?2 takes data from different groups after GConv1; c) an equivalent implementation to b) using
channel shuffle.

Shufflenet: An extremely efficient convolutional
neural network for mobile devices

1x1 Conv 1x1 GConv 1x1 GConv
1|Z BN RelU ¢ BN RelU
BN ReLU
Channel Shuffle \ 4 Channel Shuffle
¢ - 3x3 AVG Pool
3x3 DWConv v (stride = 2) Dtv .
g [3x3 onv
BN ReLU 3x3 DWConv (stride = 2)
v BN ¥ BN
1x1 Conv 1x1 GConv 1x1 GConv
N N N
Add Add Concat
¢ RelLU ¢ ReLU ¢ RelU

(@) (b) (c)

Figure 2. ShuffleNet Units. a) bottleneck unit [9] with depthwise convolution (DWConv) [3, 12]; b) ShuffieNet unit with pointwise group
convolution (GConv) and channel shuffle; ¢) ShuffieNet unit with stride = 2.

