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Manipulated images lose believability if the user’s edits fail to account for
shadows. We propose a method that makes removal and editing of soft shad-
ows easy. Soft shadows are ubiquitous, but remain notoriously difficult to
extract and manipulate. We posit that soft shadows can be segmented, and
therefore edited, by learning a mapping function for image patches that gen-
erates shadow mattes. We validate this premise by removing soft shadows
from photographs with only a small amount of user input.

Given only broad user brush strokes that indicate the region to be pro-
cessed, our new supervised regression algorithm automatically unshadows
an image, removing the umbra and penumbra. The resulting lit image is
frequently perceived as a believable shadow-free version of the scene. We
tested the approach on a large set of soft shadow images, and performed a
user study that compared our method to the state of the art and to real lit
scenes. Our results are more difficult to identify as being altered, and are
perceived as preferable compared to prior work.
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1. INTRODUCTION

Smart image editing algorithms are increasingly needed as non-
experts demand more post-processing control over their pho-
tographs. Across the wide range of techniques available in commer-
cial tools and research prototypes developed by the graphics com-
munity, soft shadow manipulation stands out as a severely under-
explored, but important problem. Since shadows are a key cue for
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perceiving shape, curvature, and height [Kennedy 1974], count-
less Internet tutorials attempt to teach users how to separate out
a shadow layer using tedious masking and thresholding operations.
These manual techniques are employed in part because many real
scenes have soft shadows, and most shadow detection and removal
algorithms developed thus far address mainly hard shadows. Be-
cause soft shadows have been shown to be correlated with people’s
perception that an image is real [Rademacher et al. 2001], easier
methods for extracting soft shadows are required.

We present a data-driven shadow removal method that is pre-
trained offline and can deal with shadows of widely varying penum-
bra widths (i.e. where there is no clear boundary between the shad-
owed and unshadowed region). In contrast to previous work, our
technique does not assume the existence of a specific model for the
umbra, and processes the entire shadow with a unified framework
while still giving users full control over which region to modify. We
can deal with complex situations that were previously impossible,
such as when the entire shadow is essentially penumbra, as is often
the case (e.g. with shadows of leaves cast on the ground). Our tech-
nique requires user interaction only to roughly indicate which area
of the image should be modified. The system then initializes and
applies our model. Once the shadow matte is computed, the user
can interactively manipulate it, or the rest of the image, using our
simple interface.

Our regression model is trained through supervised learning to
cope with our underconstrained problem: given a shadowed RGB
image I, we aim to find a corresponding shadow matte /,,, and the
unshadowed image I, that satisfy I, = I,, o I,,, (o is an element-
wise product). Similar decompositions are explored in the intrinsic
images domain [Land and McCann 1971], but we compute [,,, to
ignore both reflectance and shading, and only focus on cast shad-
ows. Also, rather than aiming for physical accuracy, our practical
objective is to produce a convincing-looking /,, as measured sub-
jectively.

In a user study comprising hundreds of rankings and assess-
ments, our technique was found to be significantly more likely to
remove soft shadows successfully than the competing methods by
Guo et al. [2012], Arbel and Hel-Or [2011] and Mohan et al. [2007]
(Figure 1 shows selected results of our method). Additionally, when
shown together with results produced by these other methods, our
results were most often chosen as the most natural-looking (please
refer to Section 7.5 for more details).

Our specific contributions are:

(1) A regression model that learns the relationship between shad-
owed image regions and their shadow mattes.

(2) A system that leverages existing inpainting and adapts large-
scale regularization to our graph of suggested matte patches,
producing results that compare favorably with the alternatives.
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Fig. 1: The first column shows the input shadowed image (top) with a user-provided coarse shadow mask (inset) as well as the unshadowed
image (below) produced by our method. The four images on the right present different unshadowed results for which the corresponding inputs
can be seen in Figure 9. This technique could be used e.g. as a pre-processing step for texture extraction algorithms such as [Lockerman et al.

2013].

(3) Data: a large-scale dataset of real soft shadow test photographs
as well as a system for generating countless training examples
of scenes with both soft and hard shadows.

For easy replication, we will make the code available both for the
method and for the user study experiments.

2. SYSTEM OVERVIEW

To use our system, the user first paints the region of the image con-
taining the shadow they wish to modify. This masked region is then
processed automatically, as follows. First, the input image is di-
vided into non-overlapping 16 x 16 patches, and for each patch a; a
descriptive feature vector f(a;) is computed. Next, our pre-trained
regressor maps each feature vector to m;, a distribution of possible
shadow mattes for that patch. A Markov Random Field (MRF) on
the grid of shadow matte patches is regularized to generate the max-
imum a posteriori shadow matte image I, for the red channel. A
final optimization computes the corresponding shadow mattes for
the green and blue channels, also yielding the unshadowed image
I,,. With the shadow removed, our interface then allows the user to
place a new shadow derived from the original shadow matte. This
shadow matte can be translated, scaled, and distorted as desired to
allow the user to create a new shadow in the image, or use the re-
sulting layers for compositing and other creative tasks.

To create a regressor mapping intensity patches to shadow
mattes, we have generated a large set of synthetic shadowed-
unshadowed image pairs and fed them to a custom Multivariate
Regression Random Forest. Our customizations allow us to take ad-
vantage of both parametric and non-parametric representations of
shadow mattes without assuming specific penumbra models. Please
refer to Figure 2 for the system diagram.
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3. RELATED WORK

Most of the previous shadow removal work has focused on hard
or nearly hard shadows. In contrast, in this work, we focus on soft
shadows, mostly ignoring the specific case of hard shadows.

Intrinsic Images algorithms, as defined by Barrow and Tenen-
baum [1978], separate images into the intrinsic components of re-
flectance and shading. This information can be used to aid other
image manipulation techniques, scene understanding, etc. While
much progress has been made in this space, many open problems
remain. The work reviewed here describes approximate solutions
that provide good results in specific cases. However, in general,
this class of algorithms is not well equipped for dealing with cast
shadows as we show in Section 7.2.

One approach to solving such under-constrained problems is
to incorporate higher-level reasoning or additional data into the
pipeline. For instance, Sinha and Adelson [1993] showed how
to differentiate reflectance from illumination discontinuities in
the world of painted polyhedra, which improved on previous ap-
proaches based on the Retinex theory [Land and McCann 1971].
Work by Laffont et al. [2013] used a multi-view stereo reconstruc-
tion to estimate intrinsic images by combining 3D information with
image propagation methods, while [Weiss 2001] used multiple im-
ages of the same object under varying lighting conditions and a
prior based on statistics of natural images to obtain convincing re-
flectance and shading separation.

Similarly in [Boyadzhiev et al. 2013], multiple images of the
same scene with different illuminations were used to enable rich
image relighting operations. Interestingly, this technique allows
softening of lights by blending multiple images, while our ap-
proach performs image-space operations for control over sharp-
ness. Bousseau et al. [2009] get their additional data from the user,
who is asked to mark scribbles throughout the image on areas of
constant reflectance and constant shading. Our user-input simply



indicates where to operate, and does not require an understanding
of which areas have constant reflectance.

Tappen et al. [2005] leveraged machine learning by first classi-
fying each gradient in the image as either shading or reflectance,
and then employing Generalized Belief Propagation to extend ar-
eas of high confidence to more ambiguous regions. Our approach
is related in that we also use supervised learning followed by a reg-
ularization of a Markov Random Field. What makes our solution
unique is a heavily customized learning algorithm and the ability
to deal with hundreds of labels at each site.

Recently, Barron and Malik [2012] used a set of priors over re-
flectance and illumination combined with a novel multi-scale op-
timization to obtain results on the MIT Intrinsic Images dataset
[Grosse et al. 2009], outperforming other methods by 60%, while
also recovering shape and illumination. While this method works
very well on images of single objects, we found in our experiments
that its results are not as reliable when faced with complex scenes
and cast shadows.

Image Matting provides another type of decomposition, and can
be used to separate foreground and background objects. In princi-
ple, this formulation could be used to separate soft shadows as Guo
etal.[2012] do when using a method by Levin ez al. [2008] to matte
out small penumbra regions. Wang et al. [2007] presented an intu-
itive brush interface combined with a fast algorithm to interactively
matte out fuzzy objects. The challenge with using these techniques
on noticeably soft shadows lies in specifying the correct affinity
function to optimize. Our method effectively learns such a shadow-
specific function from the data. Additionally, our users specify only
a coarse binary mask, rather than a trimap.

While [Chuang et al. 2003] presented an effective method for
shadow matting and compositing, they required much more input
and did not tackle the challenge of wide penumbrae.

Inpainting is a technique that fills in missing image regions.
This field has matured in recent years to the point of implemen-
tations being available in commercial tools. While useful in many
cases, it is not a perfect solution to the problem of shadow removal
as it completely discards potentially valuable information. Conse-
quently, it often fails to reconstruct structure (see Figure 3). It does,
however, often produce visually convincing results, and we exploit
it to obtain a rough initial guess to guide our algorithm.

Inpainting methods need a source of data that can be used to fill
in the missing parts. They can be seen as two categories based on
where this data is taken from: a) bootstrapping algorithms that use
the remainder of the image to be modified such as [Criminisi et al.
2003], [Barnes et al. 2009], [Pritch et al. 2009], and b) methods that
rely on previously created datasets such as [Hays and Efros 2007].
Algorithms in the former category are appealing since one does
not need to worry about creating an extensive training set. Yet, in
practice, it is often difficult to make them scale to general scenarios.
See Section 9 for an analogous extension of our method.

Both [Criminisi et al. 2003] and [Barnes et al. 2009] fill in the
missing regions by finding patches in the rest of the image that “fit
into” the hole. In both cases, care has to be taken to propagate the
structure correctly into the missing parts. While Criminisi et al.
achieve this in an automatic way by searching for matches along
isophote lines, Barnes et al. and Sun et al. opt for user guidance to
indicate structure lines crossing the hole, and thus manually con-
strain the search space. While not originally used for inpainting, a
robust approach for finding non-rigid correspondences was shown
in [HaCohen et al. 2011].

Shadow Removal [Finlayson et al. 2009] proposed a method of
detecting shadows by recovering a 1-dimensional illumination in-
variant image by entropy minimization. Given this, they were able
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to discriminate between shadow and non-shadow edges in the orig-
inal image and subsequently perform gradient domain operations
for unshadowing. The process forces image derivatives at shadow
edges to 0, which works well with hard shadows, but produces
wide, noticeable bands of missing texture when applied to wide
penumbrae.

[Shor and Lischinski 2008] tackled shadow detection and in-
troduced a removal scheme using image pyramid-based process-
ing. They deal with non-trivial umbras by compensating for the
occluder obstructing ambient light. Their method is not, however,
able to deal with complex shadow intensity surfaces such as leaves
or shadows without any umbra. The estimation of non-uniform in-
ner shadow surfaces is only done at the coarsest pyramid level, and
so only takes into account large-scale variations. Further, it is not
clear how to compute the “strips” used for parameter estimation in
the case of complex shadows. Our approach is more generic, treat-
ing the entire shadow as potentially varying, and not limiting the
variations to the coarsest scale. Further, their method is not well
equipped to entirely deal with penumbrae, and inpainting around
the shadow edges is still necessary to avoid artifacts.

[Mohan et al. 2007] proposed a method for removing as well
as modifying soft shadows. They model the penumbra by fit-
ting a piecewise quadratic model to the image intensity in user-
marked areas, therefore separating texture variations from illumi-
nation changes. This enables them to work in the gradient domain
and reintegrate the image after recognizing and removing gradi-
ents caused by shadows. The system first asks the user for input in
the form of a shadow outline specified by control points along the
shadow boundary. Additionally, the user is required to initialize the
width of the penumbra as well as the shadow amplitude for each of
the color channels separately. The algorithm then performs iterative
optimization by fitting the aforementioned fall-off model to either
vertical or horizontal intensity slices through the penumbra, updat-
ing the parameters and optimizing again. This procedure is repeated
for each segment of the shadow boundary separately (the number of
boundary segments is also user-specified) and values between the
boundary points are obtained by linear interpolation. The method
produces convincing results, but is labor- and time-intensive for the
user and requires a significant amount of computation time. In our
tests it took over 40 minutes per image, of which 10 were spent
providing the input.

After the penumbra parameters are optimized, the user has con-
trol over which gradients to remove from the image. Due to the
nature of gradient domain operations, this method often modifies
the entire image noticeably, rather than just removing the shadow.

Finally, this technique operates under two assumptions that do
not always hold: that penumbrae can be modeled accurately using
a sigmoid-shaped curve and that an umbra region exists at all.

[Wu et al. 2007] presented a matting approach to natural shadow
removal. In contrast to standard matting methods, however, they
treat the shadow matte as a pixel-wise fractional multiplier of the
unshadowed image. While their method works well on many shad-
ows, it requires noticeably more user input than our technique: a
quad map signifying the “definitely in shadow”, “penumbra”, “def-
initely out of shadow” as well as “excluded” regions. Additionally,
their matting formulation requires a distance function to be opti-
mized. While they presented one that performs well on many natu-
ral shadows, problems can occur in some scenarios (such as signif-
icant noise) since the matting cost function is not tuned for these.
In contrast, our technique can theoretically adapt to new situations
provided enough training data.

[Arbel and Hel-Or 2011] presented a critical survey of recent
shadow removal literature and argued that matting approaches such
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Fig. 2: System overview. Obtaining the final matte (far right) allows us to remove, as well as modify, soft shadows.

as [Wu et al. 2007] are not an optimal way to pose shadow removal.
Instead, they fit an intensity plane to the shadow-free surface and
thus obtain an approximate unshadowed result and separate out the
shadow. To recover the lost texture in the penumbra after fitting
the intensity surface, they perform directional smoothing on the
shadow matte in the direction perpendicular to the shadow edge.
They demonstrated results on penumbrae up to 15 pixels wide.

Another method to detect as well as remove shadows was de-
scribed by Guo et al. [2012]. The whole detection is region-based
and is performed by running an SVM classifier followed by Graph-
Cuts on the regions of the image to decide whether they are in
shadow or not, based on their appearance and relationship to oth-
ers. Once every pixel in the image is classified as either shadowed
or shadow-free, constraints for the matting step are built by skele-
tonizing the obtained shadow mask. Next, the matting method by
Levin et al. [2008] is used to obtain penumbra reconstruction.

As noted previously, matting-based approaches are problematic
for shadow removal in that they use a heuristic affinity function at
the core of their energy minimization. Since engineering a shadow-
specific affinity function might be challenging, our method effec-
tively learns it from the data. Another problem, as we found in our
evaluation (please see the supplementary material for examples), is
that the method by Guo ez al. is not well suited for user input since
it can be difficult to specify which shadows should be removed. In
the cases of wider penumbrae, the matting often “misses” the sub-
tle gradients and does not remove the shadow at all, even with a
user-provided shadow mask. While this problem could potentially
be addressed by changing how the shadow mask is used to build
matting constraints, the authors reported experimenting with a few
(e.g. treating the eroded mask as definitely-in-shadow region) and
choosing the most successful one.

4. LEARNING AND INFERENCE

While shadow mattes are generally unique, our hypothesis is that
they can be constructed from a finite set of patches tiled next to each
other. We exploit this property and perform learning and inference
on a patch-by-patch basis. A similar approach to this part of our
pipeline was recently used by Tang et al. [2014] to tackle image
dehazing. We considered alternatives to the machine learning ap-
proach we present here, such as fitting sigmoid functions to model
the soft shadow fall-off. Even with complicated heuristics, these
results were unconvincing. Those parametric models needed many
degrees of freedom with hard-to-summarize constraints and rela-
tionships to adequately approximate different ground-truth mattes.
Our learning-based approach focuses on the input/output dimen-
sions that correlate most, and is, broadly speaking, a kind of super-
vised, non-Euclidean, nearest-neighbor model.

We have empirically determined that patches of 16 x 16 pixels
work well for our purposes. Further, we assume that color channels
of a shadow matte are related to each other by a scaling factor.
Specifically, we assume it is possible to reconstruct the green- and
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Fig. 3: Example initial guesses. From the input image (left) we use inpaint-
ing to obtain an initial guess for the unshadowed image (middle). That in
turn yields an initial-guess matte that forms part of our feature vector and
aids regularization. The right column shows the output of our algorithm: an
unshadowed image respecting the texture present in the shadow. Note that
inpainting alone is unable to recover structure in the above cases.

blue-channel mattes given the red-channel matte and the inferred
scaling factors o, and oy, (see Section 5). We have chosen the red
channel for performing learning and inference, and to reconstruct
the color result in the post-processing step. While this splits the
problem into two optimizations, it reduces the parameter space that
must be learned from data.

4.1 Preprocessing

Using an off-the-shelf inpainting method by Barnes et al. [2009],
we first replace the user-specified shadow region completely with
a plausible combination of pixels from the rest of the image as
shown in the middle column in Figure 3. We then apply Gaus-
sian blur in the inpainted region and divide the input image by it
to obtain the first approximation to the matte (we constrain any
resulting pixel intensities to the range [0, 1]). The blurring step is
necessary to both minimize the impact of slight inpainting errors,
and to avoid producing spurious frequencies in the image after di-
vision. We have examined alternatives to this initialization method,
including guided inpainting, but were unable to find one producing
more optimal results (please see Section § for more details).

For training, our regressor expects as input a small intensity
patch a; (or rather a feature vector f(a;) computed over this patch),
as well as the corresponding ground truth matte patch m; as the la-
bel, so we need to extract these pairs from our large set of training
images. From each image we could potentially extract many thou-
sands of such pairs. To avoid redundancy, we chose to sub-sample
each training image to extract J training pairs overall (in all our
experiments we have used a training set of size J = 500 000). Ad-
ditionally, we bias our sampling so that in each training image, half
of the samples come from the penumbra region only and half are
sampled evenly across the entire shadow (which also includes the
penumbra). This avoids over-sampling of uninteresting regions of
flat shadow profile and provides greater variety in the training set.



Alignment We observe that many patches, though seemingly
different in their raw form, can ultimately appear very similar after
aligning with an appropriate Euclidean transform. This allows us to
perform inference on rotationally-invariant data, exploiting struc-
ture present in our labels. While a similar effect could be achieved
by increasing the amount of training data used, we achieve equiva-
lent results without noticeably increasing the training time.

For each intensity patch that we wish to include
in our training set, we search through a limited set
of rotations and translations to find one that results ;
in the smallest distance to the template patch. As the
template, we have chosen a simple black-and-white
square, as shown on the right. We then apply this transformation to
both the intensity and the matte patches. At test time, we perform
the same procedure before computing features and, after obtaining
the estimated label, apply the inverse transformation to it (see Fig-
ure 4).

4.2 Learning

For each patch, we form a column feature vector by concatenat-
ing the following features (we have chosen them based on intuitive
interpretations of their relationships to shadow profiles as well as
empirical evaluations).

(1) Distance from the edge of the user-masked region normalized
so that the values lies in range [0.0, 1.0]. The distance from the
edge of the shadow often indicates the “flatness” of the profile,
since shadow matte patches far from the edges are likely to
contain the most uniform intensities.

(2) Predicted matte for this patch from the initial guess. While
the initialization is often wrong when used directly, in many
situations it provides a hint as to how the image should look
without the shadow.

(3) Vertical and horizontal gradients (finite differences) of
the patch, which convey information about the slope of the
shadow.

(4) Pixel intensity values of the patch in the range [0.0,1.0]
shifted in the intensity domain so that their mean falls at 0.5.
The intensity values are normalized, since they are not directly
correlated with the matte (given a dark shadowed intensity
patch it is impossible to determine whether it is a dark shadow
on a bright background, or a bright shadow on a dark back-
ground). Therefore we give the inference algorithm processed
features that are likely to contribute to the decision (i.e. indicat-
ing the slope of the shadow), but without confusing differences
in absolute intensity. While this information is theoretically re-
dundant given the gradients, it provides the Random Forest
with more choices to use for discrimination without hurting
its performance.

Our label vector contains the pixel
values from the shadow matte. Even
though at test time we obtain sugges- AN
tions for each patch in the 16 x 16 @
grid in the shadow region (just the in-
ner squares in the inset figure), both
our features and labels are computed
over a larger 32 x 32 window (outer
squares). This serves two purposes:
to enable smoother results by provid-
ing more context to the features, and
to aid the alignment and realignment
described in Section 4.1.

N

Before alignment

After alignment
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We have chosen to use Random
Forest as the inference mechanism both because of its versatility
and a widespread use in the literature (e.g. [Reynolds et al. 2011],
[Shotton et al. 2012], [Criminisi et al. 2013]). A brief introduction
to the traditional Random Forest algorithm below is followed by
our modifications and the reasons for introducing them.

Given a standard supervised-training data set of input/output
pairs (i.e. the feature vectors and the corresponding label vectors),
we can use Random Forests to create a set of decision trees that
will allow us to predict the label vectors for new, yet unseen fea-
ture vectors (provided they resemble the statistics of the training
examples). Each of the separate decision trees is imperfect, usu-
ally only trained on a random subset of the training data (a process
called bagging) and with no guarantees about a globally optimal
inference due to the nature of the training process described be-
low. However, averaging the responses of a collection of trees (i.e.
a “forest”), often results in accurate predictions.

Given a “bagged” set of training data (that is, a subset of all avail-
able feature/label pairs), a decision tree is trained as follows. First,
we define an impurity, or entropy, measure for a collection of labels,
a value that is low when the labels at a node are homogeneous, and
high when the labels are different to each other. Then, a binary tree
is generated by splitting the available data along the dimensions of
the feature vector in a way that minimizes the impurity of the split
collections. Alternatively, this can be posed as maximizing the in-
formation gain—the difference between the original impurity and
the sum of child impurities. The generation process starts at the root
node, with all the data available to a given tree. It tests a number
of random splits along the feature dimensions and chooses the one
that results in the largest information gain (an example split could
test if the 7th entry in a feature vector is greater than 0.3). It then
creates two child nodes, left and right, and pushes the split data into
them. The same process is repeated at each node until a stopping
criterion is reached (usually a predefined tree depth or a number of
samples).

After training, the forest can be used for predicting the labels
for new feature vectors. The feature vector in question is “pushed”
down each tree depending on the values of individual features and
the node thresholds. After arriving at a leaf node, the mean label
of all the training samples that landed at this node is taken as the
answer of this tree. Finally, answers of all trees are averaged to get
a more robust prediction.

We use a modified version of Multivariate Regression Random
Forests in this work. While Random Forests in general have been
well-explored already, their use for practical multivariate regres-
sion has been limited [Criminisi et al. 2013]. One of the challenges
lies in computing node impurity—in classification, this can be done
easily by counting samples belonging to each class, whereas in re-
gression, one needs to evaluate the probability density function,
which can be costly in high dimensions.

Our labels lie in R2V*2N=1024 (\where N = 16 and 2N comes
from the fact that we store areas larger than the original patches),
so it would not be feasible to directly regress entire patches. How-
ever, we observe that they can be effectively represented in lower-
dimensional space, since penumbrae generally do not exhibit many
high-frequency changes. Moreover, we only need the representa-
tion to be accurate enough to cluster similar labels together—we
do not lose detail in the final answer because of the non-parametric
nature of our inference method described below (in short we build
the forest based on the low-dimensional representation, but retrieve
final labels in the original, high-dimensional, space). Therefore, we
use PCA to project our labels into RP=%, which provides a good
balance between the degrees of freedom necessary to discriminate
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Fig. 4: Patch alignment. At training time (top) we look at each patch in the shadow area (orange square) and find a small-magnitude
Euclidean transform to bring the patch as close as possible to the template. We then cut out the expanded patch a; (blue square) and use it to
compute features f(a;). Additionally, we cut out the same location from the ground truth matte to obtain the label m;. Finally, we feed these
feature/label pairs to the Regression Random Forest to learn a mapping function g(f(a;)) — m;. At test time (bottom), we also start with
a grid patch (orange square) and, after finding an optimal offset, cut out the surrounding area a (blue square) from which we compute the
features f(a}). After pushing these through the forest we obtain a label m/; that we re-align and crop to paste into the original position in the

output image (small, orange square).

between patches, and computational complexity while evaluating
impurities. Specifically, at each tree node n, we assume a Gaus-
sian distribution for the labels of all samples S,, falling into it, and
evaluate impurity

H, =log(detXs,) (1

by taking the log of the determinant of its covariance matrix Xg,,
following Criminisi et al. This allows us to define the information
gain

G =Hy— Y (IS:|/ISu])He @

cef{l,r}

which we aim to maximize at each split node while building the
trees. We weight the information gain by the proportion of samples
falling into each child node (I and ) to encourage more balanced
trees as in [Breiman et al. 1984].

We set the minimum sample count at a node to K = 2D and
grow our trees as deeply as necessary until we do not have enough
samples to split. In principle, K could be as low as D (number of
samples needed to compute a D-dimensional covariance matrix).
However, in practice, we find that the samples are often not linearly
independent, leading to degeneracies. After a leaf node is reached,
instead of building a typical parametric distribution of all its labels,
we save the indices of training samples falling into this node, al-
lowing us to perform inference as described in the next section.

4.3 Inference

Our inference step acts as a constraint on the initial guess—we want
to “explain” the initial-guess mattes as well as possible using sam-
ples from our training set, but only those suggested by the forest as
relevant.

At test time, we compute the feature vector for each patch as be-
fore and, after pushing it through each tree, arrive at a leaf node.
From here, instead of looking at the label distribution, we simply
get the indices of training samples that fell into this leaf. Conse-
quently, we obtain L label suggestions, where L > TK and the
number of trees in the forest 7' = 25. We do this for each patch in
the 16 x 16 grid in the shadow region and arrive at an optimization
problem: for each image patch in our matte we want to choose one
of L labels that agrees both with our initial guess and any available
neighbors.

In summary, the changes we have made to the original RRF al-
gorithm are:

(1) Using two representations of labels: low-dimensional used
to evaluate node impurity and build the forest, and high-
dimensional used for retrieving the labels at test time. This
is motivated by computational constraints and enabled by the
non-parametric treatment of labels.

(2) Non-parametric treatment of the labels to avoid over-
smoothing. Instead of one mean answer in label-space, we get
a distribution of samples from the data, including extremes,
which we want to preserve.

(3) Treating the inference algorithm as a step in the pipeline, rather
than the entire pipeline. We only get an intermediate result
from the forest (several matte patch suggestions for each patch)
and use regularization later on to extract the final answer. As
above, this allows us to benefit from relatively limited amounts
of training data (compared to the number of theoretically pos-
sible labels in 2566 16-dimensional space), without averaging
out unusual shadow profiles.
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Naive color reconstruction method

Our method

Fig. 5: Treating each channel independently results in inconsistent shadow
mattes (top left) that manifest themselves with colorful splotches in the un-
shadowed output image I,, (top right). Our method assumes that the three
color channels are dependent—it only regresses one of them and recon-
structs the other two as explained in Section 5. Please see the digital version
for faithful a color representation.

4.4 Regularization

Finding a more specific combination of matte patches is not trivial
due to the nature of our labels and the fact that there might be dif-
ferent numbers of label suggestions available at each node. Averag-
ing all the candidate patches at each location would not be optimal,
since any unusual shadow profiles would be lost. On the other hand,
choosing best-fitting patches greedily and then trying to smooth out
the edges between them would a) be extremely difficult to do for
small patches that are likely to be incompatible and b) introduce
an implicit, non-data-driven, shadow model in smoothed regions.
Instead, at each location, we choose the best patch by regularizing
the entire graph with the TRW-S message passing algorithm [Kol-
mogorov 2006]. We use the energy function

E:Zw(mi)Jr)\ Z Y(mg,my), 3)

i€l i,jEN

where Z is the set of nodes in the regularization graph (i.e. all the
masked image patches) and A denotes the set of neighboring nodes
in a 4-connected neighborhood. The unary cost w(m;) is the SSD
distance from the patch m; to the corresponding area in the initial
guess, the pairwise cost 1(m;, m;) is the compatibility of patch
m; to my;, and X is the pairwise weight (A = 1 in all our experi-
ments). We define the patch compatibility 1 (1m;, m; ) as the sum of
squared differences between adjoining rows (or columns) of these
two patches:

SSD (rowN (my;), row; (mj)), if m; is above m;

Y(my,my) = if m; is to the

SSD(colN(mi),coll(mj)), right of m;;

(C))
where rowx (m;) and coly(m;) are the last row and column of
patch m,; respectively. We also create boundary constraints to en-
sure that the shadow disappears outside of the user-selected region
by forcing patches just outside of the user mask to constant 1.0
(meaning completely shadow-free).
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0.0)

0.0)

Fig. 6: Ground truth shadow matte profiles for RGB color channels in three
real photographs. Note that, disregarding noise, all channels share the same
basic “shape” and reach 1.0 (no-shadow zone). Our experiments indicate
that acceptable green and blue mattes can usually be reconstructed by opti-
mizing (5).

5. COLOR OPTIMIZATION

We could repeat the above procedure twice more to obtain the
remaining green and blue channel mattes. Indeed, in theory, this
would be the most general solution, assuming no relationship be-
tween different frequencies of light. In practice, however, we find
that this relationship is quite strong, and providing an additional
constraint to enforce it makes our method more robust. The top
row in Figure 5 shows a shadow matte and the corresponding un-
shadowed image estimated by the naive way, i.e. each channel sep-
arately. Note the splotches of different colors revealing where the
mattes of different channels do not agree. The bottom row shows
our default procedure, described here.

We assume that the surface of the shadow matte has the same
shape in all three channels, but that it differs in magnitude as shown
in Figure 6. For instance, while in outdoor scenes the shadow matte
will be blueish, the red and green channels can be obtained by scal-
ing the blue channel matte in the intensity domain so that areas with
no shadow remain that way, but the overall depth of the shadow
changes proportionately. This assumes that, while light sources can
have different colors, they do not vary much spatially.

Relative to the estimated red channel shadow matte, we model
each of the other channels with a single scale factor parameter,
o4 and oy, respectively. To estimate them jointly, we discretize and
search the 2D space to minimize the error function

Ecolor(ag7 Ub) = log(det(ZR)), (5)

where Y is the covariance of a three-column matrix R listing all
the RGB triplets in the unshadowed image after applying that color
matte. We constrain the search in each parameter to lie between 0.8
and 1.2 with discrete steps of 0.01. We find that the scaling factors
o4 and oy, rarely exceed 1.1 and never fall below 1.0 in outdoor
scenes.

The intuition behind this approach is that unshadowing an image
should not significantly change the distribution of colors in it. Since
introducing new colors would increase the entropy of ¥, we use
this measure to find scaling factors that minimize it.

For efficiency, we run this optimization on a version of the output
image downsampled to 10% of its original size. This optimization
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serves to prevent our unshadowing method from introducing new
colors into the images. The user can override these scale parameters
with our shadow-editing interface (Section 7.1), but all our results
are shown with the automatic adjustment unless specifically stated.

6. DATA GENERATION

To train our model, we need large amounts of data to capture a va-
riety of scene configurations and shadow-receiving surfaces. Since
it would be extremely difficult to capture a large enough set of real
images, we follow previous works, such as [Mac Aodha et al. 2010]
and [Tang et al. 2014], in training on a synthetically-generated
training set and applying it to real data. We have carefully config-
ured Maya with realistic lighting conditions to generate shadows
cast onto various textures as illustrated in Figure 7. For each light-
occluder-texture combination, we have rendered the image with
and without shadow, implicitly obtaining the corresponding matte.

While shadows in the real world are cast by three-dimensional
objects, for each shadow there also exists a 2D slice through
the occluder that would produce identical results. Therefore, we
have used automatically-segmented silhouettes of real objects from
[Griffin et al. 2007] as occluders in our synthetic scenes (we have
segmented them automatically by using [Boykov et al. 2001]). This
has the advantage over using 3D models of providing realistic sil-
houettes, as long as the images used are easily segmentable. Addi-
tionally, a variety of real images' were applied as textures for the
receiving surfaces.

Finally, we varied light conditions in the scene by randomly
choosing the shape and size of the light, its angle and distance from
the ground, as well as the angles of the occluder and the ground
plane.

In our experiments, we have trained the model on over 10,000
512 x 512 image pairs, choosing 50 patches from each image. Ad-
ditionally, we have automatically generated binary shadow masks
to only train on relevant regions. We have rendered all our images
without gamma correction to make the relationship between image
intensity and shadow attenuation easier to model. While this should
mean that the shadow profiles we learn are slightly different than
those observed in regular, non-linear images, we have not investi-
gated this relationship, or the impact of real sensors and noise.

While our data generation method provides data diverse enough
for our purposes, it is limited, containing only a single light source
(in addition to a simulated sky and global illumination) and a sin-
gle occluder in each image. Further, the shadows are always cast
on textured planes, instead of more complex geometries. Finally,
because we only learn single-channel shadow characteristics, no
effort was made to include different light frequencies in the dataset.

7. EXPERIMENTS AND RESULTS

To capture real data for evaluation, we have used Canon 450D and
550D DSLR cameras to capture 14-bit-per-channel RAW, linear
images. We provide this set of 137 photographs, 37 of which have
the corresponding ground truth shadow-free images (and mattes),
as a benchmark for future methods. The ground truth was obtained
by placing the camera on a tripod and capturing two images: one
with the shadow and one without by removing the shadow caster.
For our experiments, we have converted the images to 8-bit-per-
channel linear PNGs and, after processing, de-linearized them for
display by applying gamma correction with v = 2.2 (see Supple-
mentary Material).

Lhttp://www.mayang.com/textures/
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Scene arrangement in 3D

Shadowed I Shadow-free I,

Fig. 7: To generate the training data, we rendered 10,000 {shadowed,
shadow-free} image pairs, each time varying the light source, the occluder,
and the ground plane.

7.1 Shadow Editing

Knowing the shadow matte al-
lows us to not only remove the
selected shadow, but also enables
a range of high-level image edit-
ing techniques. We have imple-
mented a basic interface with
four different alteration methods
to give artists control over how
the selected shadow looks: shape
transformation, changing bright-
ness and color, and sharpening
the shadow. Color, brightness,
and sharpness are adjusted using
sliders, while direct manipulation
controls enable a direct homogra-
phy transform, allowing users to
change the position and shape of
the cast shadow. Please see the
supplementary video for exam-
ples.
We can use the recovered
shadow mattes to aid tasks such
as compositing, texture extraction efc., which are normally chal-
lenging tasks requiring substantial manual work. Both the matte
and the unshadowed image can be exported to any number of
generic image editing tools for further processing.



Mean RMSE
Ours 13.83
Arbel and Hel-Or 2011 18.36
Guo at al. 2012 19.85
Guo at al. 2012 (automatic detection) 19.19

Table I. : RMSE between results of different shadow removal methods and
the ground truth shadow-free images. While our scores best, our real aim is
to convince subjects that the resulting images are unaltered.

7.2 Visual comparison with other methods

We have evaluated our algorithm against other related techniques
and display results in Figure 8. We have chosen the best results we
were able to obtain for this image using the original implementa-
tions of [Mohan et al. 2007] and [Arbel and Hel-Or 2011], but since
the user has some freedom in the use of their systems, we cannot
exclude that a more skilled person could achieve better outcomes
(note that for Mohan et al. we have downsampled the image by 50%
to speed up processing). Please see the supplementary material for
many more results.

While intrinsic image algorithms could be considered an alter-
native to shadow matting, it is important to note that they have dif-
ferent goals and it would not be fair to directly compare the two, so
the examples are shown just for illustration. While shadow matting
usually deals with cast shadows, intrinsic image techniques gen-
erally decompose images into reflectance and shading components
where, in practice, shading mostly refers to attached shadows. Most
of these techniques are poorly equipped to recognize cast shadows
as illumination changes unless given access to additional data such
as in [Weiss 2001].

Finally, the method presented by Finlayson et al. [2009], does
not provide perfect illumination-invariant images, as shown in Fig-
ure 8. In the first image, while the ilumination differences are not
visible, some reflectance-induced gradients were removed as well
(flower patterns in the top part of the image). For a different input,
in the image on the right, illumination differences are still visible.

Finally, binary masks and shadow mattes for sample images are
presented in Figure 9.

7.3 Quantitative evaluation

Table I shows quantitative evaluation of our and related methods in
terms of RMS error from ground truth (for this evaluation we have
used all images, which were processed by all four methods), while
Figure 10 shows pixel-wise differences to ground truth on a single
example. Note that quantitative comparisons are not, in general,
representative of perceptual differences and are included here only
for completeness.

7.4 Impact of variations in the user input

Our method does not automatically detect shadows in the image,
instead giving the user control over which regions should be modi-
fied. To establish how robust it is to variation in the user input, we
have asked 4 users to create masks for 5 different scenes and ran
the unshadowing algorithm for each input.

Each user was instructed to paint over the areas of the image
containing the shadow and to prefer over- to under-selection for
consistency with our assumptions (namely, that it is difficult to ex-
actly determine boundaries of soft shadows and that our algorithm
is only allowed to modify selected regions).
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Scene Name ‘ Mean Pairwise RMSE

real22 8.35
real26 6.15
real138 14.55
real 168 1.02
real249 1.58

Table II. : Differences between images unshadowed by different users. Each
of the 5 scenes was unshadowed by 4 users. For each scene, RMS differ-
ences were computed between each image pair, and the mean of these er-
rors is shown above. Please refer to the supplementary material to see all
the user-provided masks and the resulting unshadowed images.

To properly investigate the impact of user input only, we have
constrained the inpainting to be the same for each user. This is nec-
essary, since the inpainting algorithm we use is non-deterministic
and constitutes the main source of variation between runs. After
having all the user-provided masks we have created a union of them
(i.e. pixel-wise logical-or) and used it as the inpainting mask.

As Table II indicates, the final results are fairly robust to variance
in user input. The largest differences are caused by users underesti-
mating the extent of the shadow and thus not marking some regions
for modification. We have included the different input mattes and
corresponding unshadowed images in the supplementary material.

7.5 User Study

To understand how our results compare to those produced by prior
work, specifically the methods of Guo et al. [2012] and Arbel and
Hel-Or [2011], we conducted a user study similar in spirit to [Kopf
et al. 2012]. We have modified the method of Guo er al. to sidestep
the automatic shadow detection and instead use the same shadow
mask that was given to our algorithm (though the results from Guo
et al.’s unmodified version are included in the supplementary mate-
rial). Please also note that the method of Arbel and Hel-Or required
more input that was provided manually for each image.

We have assembled a set of 117 images for user evaluation by
combining a subset (soft shadows only) of the dataset released by
Guo et al. with a subset of our own images: 65 from Guo’s and 52
images from our dataset. The complete set of images used can be
found in the supplementary material. Our study consisted of two
phases: a) a series of ranking tasks in which participants ordered
a set of two or three images, and b) a series of evaluation tasks in
which participants indicated the success of shadow removal on a
particular image using a 4-point Likert scale. Both phases started
with a tutorial example and displayed instructions on the right side
of the screen throughout all trials. Additionally, in each phase, we
have asked the participants to estimate their confidence in their
choice on a 3-point Likert scale.

In the ranking phase, participants were shown 15 random image
tuples (from a set of 117), where each tuple consisted of images
of the same scene modified with one of three methods: ours, Guo
et al.’s and Arbel and Hel-Or’s. Using a drag-and-drop interface,
participants were asked to order the images according to how nat-
ural they looked (i.e. from most to least natural). The aim of this
part of the study was to establish how believable the produced re-
sults were, without the participants being aware that any shadows
were removed. Roughly half of the tuples showed results from each
of the three methods, and half paired our result with one of either
Guo et al. or Arbel and Hel-Or. For all participants, the order of
the tuples was randomly chosen, along with the order of the images
within the tuple.
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Input: mask and shadowed image unshadowed ours unshadowed Guo et al.

unshadowed Arbel and Hel-Or [2011]  unshadowed Mohan et al. [2007]  Finlayson er al. [2009] two distinct illumination-invariant images

Barron and Malik [2012]: shading and reflectance Tappen et al. [2005]: shading and reflectance

Fig. 8: Comparison with other methods on the “real151” input image. Note that both Barron and Malik and Tappen et al. perform slightly
different image decomposition: rather than matting cast shadows, they extract shading and reflectance components. (The second illumination-
invariant result for Finlayson et al. comes from the shadowed image in Figure 9.)

In the second phase, 15 images were randomly drawn for each We analyze our study data using Bayesian data analysis methods
user from a pool of 282 images. These were the same set of images [Kruschke 2011]. Unless otherwise stated, reported results repre-
as in the first phase, however, now each image was shown sepa- sent the posterior mean, and the confidence interval (CI) represents
rately rather than in a tuple. Of these images, 118 were processed the range encompassing 95% of the posterior probability.
using our technique, 114 were processed using Guo et al.’s, and Participants rated a total of 694 image tuples in the ranking phase
50 using Arbel and Hel-Or’s. The set of 15 images was randomly and analyzed 605 images in the evaluation phase. In the ranking
chosen subject to the constraint that the images seen during the first phase, we calculate the posterior probability of each method being
phase could not be used in the second. Each of these images was ranked first (i.e. appearing the most natural). We model this as a
augmented with a bright arrow pointing to the centroid point of Bernoulli random variable with a uniform Beta prior. As shown in
the shadow that was to be removed, and participants were asked to Figure 11, results produced by our method were significantly more
assign a score {1,4} based on how successfully they thought the likely to be ranked first than the competing methods.
shadow was removed. Low values corresponded to cases where the In the second phase, participants ranked the success of shadow
shadow was not removed or where the removal introduced artifacts, removal with a score {1,4} for each image. Figure 12 shows the
while high scores indicated successful shadow removal and no vis- normalized histograms of scores assigned to results produced with
ible defects. The centroid was computed automatically by finding each of the three methods. As can be seen, our method obtained
a point on the skeleton of the binary shadow mask closest to the high scores in the evaluation task more often than the other meth-
mean position of the masked pixels. The order of the two phases ods. Additionally, we have evaluated how likely each method was
(ranking then evaluation) was fixed for all participants. to unshadow images perfectly (we define “perfect” shadow re-

Results The study was deployed on a website. We recruited 51 moval as one with mean evaluation score across all participants
participants through email lists, word-of-mouth, and Facebook. In- Meval > 3.5). Figure 13 (left) shows the posterior probabilities for
dividuals could participate by visiting a link using their own com- each method to produce a perfect result (as before we have modeled
puting device. Of the 51 participants, 39 completed the whole ex- this using a Bernoulli random variable with a uniform Beta prior).
periment, 7 quit before finishing the first phase, and 5 quit during The results show that our algorithm is significantly more likely than
phase two. Because of the randomized design of the study, we in- others to succeed in this scenario.
clude all participant data, including data from participants who did We have also characterized the results by considering the data
not complete the entire study. Additionally, 28 people visited the from both user study phases together. The right part of Figure 13

experiment, but did not answer any questions.
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Input Coarse, user-provided mask Recovered shadow matte

Fig. 9: Results of shadow removal using our method on a variety of real photographs. The left column shows original images, the middle
column shows user input, and the right column shows the obtained shadow mattes (the resulting unshadowed images are presented in
Figure 1). The mattes could also be used to modify the properties of the shadows as we show in Section 7.1.
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Shadowed Reconstructed unshadowed

Ground truth shadow-free Squared difference (x3)

Fig. 10: While the aim of our work is to enable perceptually-plausible results, here we show the differences between the output and the

ground truth.
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Fig. 11: Posterior probabilities of each method winning a ranking round.
The shaded, rectangular regions signify the 95% Confidence Interval (CI).

Arbel and Hel-Or 2011 (112) Guo et. al 2012 (244) ours (249)
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Fig. 12: Normalized histograms of image evaluation scores for different
methods. Higher scores correspond to images where the shadow was re-
moved successfully and no artifacts were introduced, while low scores mean
that the shadow removal failed and/or there were visible artifacts intro-
duced. Numbers in brackets above each plot show how many evaluations
contributed to it. Overall, our method has the highest chance of obtaining
high scores and therefore removing shadows successfully.

shows the probability of a given image winning both the ranking
phase and the evaluation phase.

Additionally, in Figure 14 we show the probability of our method
or Guo et al.’s method winning the ranking task while simulta-
neously having different evaluation scores. We show that when
images unshadowed by Guo et al.’s method win, they are likely
to have low scores, while our method winning likely means high
scores. This can be explained by the fact that in their case, the
method sometimes “misses” softer shadows and does not modify
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Fig. 13: Left: posterior probability of image having a shadow removed per-
fectly (mean score fie,q; > 3.5). Right: posterior probability of image
modified with a given method winning both in the ranking and evaluation
phases.
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Fig. 14: Probability of winning the ranking task conditioned on the winner’s
mean score in the evaluation task. Note that when Guo et al. win, their
scores are likely to be low, while the opposite is true for our method.

them at all. In these cases, the image is likely to rank high on the
naturalness scale, but still fail the shadow removal evaluation.

Closer inspection of this combined test set revealed that the mean
maximum penumbra width of images from Guo et al. is 32 pixels,
while for the the test images we have introduced it is 55. We have
therefore analyzed how the performance of different methods varies
on different subsets of the data. As shown in Figure 15 in the case
of testing on Guo’s data only, no significant difference between our
and Guo et al.’s method was observed (while the MAP estimate of
our method is lower, the confidence intervals overlap significantly).
On the other hand, our method performs much better on the dataset
with higher mean penumbra width (i.e. softer shadows).

10
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Fig. 15: The different performance characteristics on different slices
through the dataset seem to be correlated with the softness of the shadows:
our technique has the biggest advantage on images with softer shadows.
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Fig. 16: Histograms of evaluation scores conditioned on the dataset used.
Our method is either significantly better or comparable to the competition.
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Figure 16 shows similar trends as in the ranking case: when us-
ing the dataset with moderately soft shadows our method is indis-
tinguishable from Guo e al.’s, but as the penumbra size increases
our performance becomes relatively higher.

Finally, we have conducted a separate user study comparing our
method to that of Mohan ef al. [2007]. We found that participants
preferred our results 65% of the time when shown against Mohan
et al’s, and were significantly more likely to highlight artifacts in
their results than in ours.

8. LIMITATIONS

Though our method is somewhat robust to inpainting errors, it is
often unable to recover when the initialization fails significantly.
Trying to remedy this, we have evaluated three different strategies
for producing an initial guess for our algorithm: a) plane-fit to the
unmasked regions of the image, similar to Arbel and Hel-Or 2011,
b) guided inpainting and c) regular inpainting.

In guided inpainting, our aim was to replace the shadowed re-
gions of the image with unshadowed pixels from the same image
and, ideally, the same material. We have modified the PatchMatch
algorithm to replace masked image areas with patches from un-
masked regions in the same image. Further, we have modified the
distance function used by PatchMatch aiming to make it illumi-
nation invariant. To achieve that, we have transformed the image
from RGB space to a different, multi-channel space, where the new
channels included the illumination-invariant image from Finlayson
et al. 2009, pixel chromaticity, as well as Gabor filter responses.

Unfortunately, the final results obtained when using this method
proved to be comparable, but still noticeably worse than off-the-
shelf inpainting. One of the main issues was that images often con-
tained other shadows that were not to be removed as per user in-
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Inability to explain some hard shadows

Gross inpainting failure

Incorrect color adjustment (see video)

Fig. 17: The left column shows input images, the inpainted initializations
are in the center, and the outputs can be seen on the right. Please note that
in the case of incorrect color optimization, the user can easily rectify any
mistakes by using our simple shadow editing interface as shown in the sup-
plementary video.

a) Our result b) Result from Guo et al. [2012]
Fig. 18: An example image (p4-1), where our method produces visibly
worse results than that of Guo et al.

put. As a consequence, despite our efforts, the most closely match-
ing patches used to replace the in-shadow regions came from other
shadows, therefore providing a poor guidance for unshadowing. A
few examples comparing the three approaches are presented in Ap-
pendix 4 in the supplementary material.

Another limitation is that the technique is not able to deal with
narrow penumbrae i.e. hard shadows, since we have biased our
training set and feature representation for the specific challenge of
soft shadows (see Figure 18). A valuable future direction would
be to either extend the existing approach with an expanded fea-
ture representation, possibly based on Convolutional Neural Net-
works [Farabet et al. 2013] and significantly more hard-shadow
training examples, or to pair it with one of the hard-shadow spe-
cific methods, such as Guo et al. The second approach could fol-
low MacAodha et al. [2010], who tackled switching between dif-
ferent optical flow algorithms for different scenarios. In our case,
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Fig. 19: The success of the method also depends on the user input. The
images show the same image (“real26”) unshadowed by different people
using the masks shown below. The mask on the right does not cover the
entire shadow and results in some of penumbra being left in the image.
Please see supplementary material for more examples.

the task-classification would be simpler, (hard vs. soft) though our
preliminary experiments showed that hard-shadow detection is it-
self hard, as sudden reflectance changes are often falsely detected
as hard-shadows. As classifiers or user-interfaces emerge to discern
hard and soft shadows, our method provides effective treatment of
the soft-shadowed regions.

Additionally, we explicitly trust our users to provide correct in-
put data. When this is not the case, our method will produce sub-
optimal outputs, as demonstrated in Figure 19.

Finally, in some cases the inference stage is unable to produce
compatible matte suggestions at neighboring regions in the image,
which results in visible grid-like artifacts (see e.g. the top-right im-
age for Figure 17). While the effects of this limitation are often hid-
den by the texture underneath the shadow, a possible solution could
be to increase the feature patch overlap or to create a stronger pair-
wise distance constraint. Both of these solutions are challenging,
however, as they require more training data and therefore computa-
tional effort.

9. CONCLUSIONS AND FUTURE WORK

We have presented a model for removing soft shadows that is not
based on heuristics, but instead draws from the experience of the
graphics community to learn the relationship between shadowed
images and their mattes, from synthetically generated, but realistic,
data. Our approach can deal with soft and complex shadows, and
produces results faster than the most related techniques in the lit-
erature. It requires little time and input from the end-user, and our
study showed that our method is significantly better than existing
methods in successfully removing soft shadows.

More generally, we have presented a unique use of Regres-
sion Random Forests for supervised clustering of high-dimensional
data, coupled with a regularization step that is adaptable to general
scenarios. Similar ideas could be applied to video e.g. by perform-
ing regularization across frames.

There are several ways this technique could be extended in fu-
ture work. One of the most obvious additions could be some under-
standing of the scene and its contents. With more information about
e.g. normals and depth discontinuities, our technique might be able
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Standard Bootstrapping

Fig. 20: Comparison with bootstrapping extension. While for some images
bootstrapping allows us to obtain comparable results with a much smaller
training set (the image on the right used a training set of J = 50 images)
it makes much stronger assumptions and is therefore not as generally appli-
cable.

to better identify and composite shadows. This information could
also feed into the following bootstrapping extension to sample the
unshadowed texture more efficiently.

Another interesting problem would be the creation of guided in-
painting systems that could be used for initializing our method. For
example, a method similar to [HaCohen et al. 2011] could help
find correct out-of-shadow correspondences, while more user in-
put could provide constraints for the initialization (e.g. structure
cues as in [Sun et al. 2005]). As better guided inpainting algorithms
emerge, our framework will be increasingly effective.

Possible extension As mentioned previously, inpainting algo-
rithms can be divided into those that use a pre-built dataset and
those that use the remainder of the image being modified. Simi-
larly, some super-resolution techniques (e.g. [Glasner et al. 2009])
use parts of the image to be modified as exemplars for synthesis.
Using the same reasoning, we can adapt our method so that it boot-
straps the training set from the input image. For this variant, we
prepared a set of prerendered shadow mattes and applied a random
subset of them to different positions in the shadow-free areas of the
input image. This results in pairs of [shadowed, shadow-free] im-
ages that we use to train the forest, which is then used for inference
in the same process as previously.

The advantage of this extension is that it builds a finely-tuned
regressor for this particular image which yields high performance
given a smaller training set. On the other hand, it is critically reliant
on the assumption that the image has enough out-of-shadow areas
with similar texture as the shadowed parts, which limits the number
of images suitable for this method. Nevertheless, in the right cir-
cumstances this method can produce good results—see Figure 20.
More work in this area could lead to more robust solutions.

Further, it might be possible to automatically detect hard and soft
shadows in the given image and to selectively apply our method for
soft shadows only, and a hard shadow-specific method otherwise.

Additionally, techniques for detecting forgeries, such as [Kee
et al. 2013], may gain more power given the ability to explain soft
shadows. Finally, works such as [Shih et al. 2013], addressing the
problem of image relighting from a single photograph belong to
an exciting area that could benefit from the ability to seamlessly
remove and modify shadows.
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