
Multi-view Reconstruction of Highly Specular

Surfaces in Uncontrolled Environments

Supplementary Material

A Probability distributions

Multivariate t-distribution on R3
. A multivariate t-distribution is a generalization of the

Student's t distribution to higher dimensions. Its probability density function (pdf) is

t(x|µ, ν,Σ) =
Γ [(ν + p)/2]

Γ(ν/2)νp/2πp/2 |Σ|1/2
[
1 + 1

ν
(x− µ)TΣ−1(x− µ)

](ν+p)/2 , (1)

where the p = 3 is the dimensionality of the domain, ν ∈ R is the degrees of freedom, µ ∈ R3 is
the mean vector and Σ is the correlation matrix [1, Chapter 1.1]. We use a diagonal correlation
matrix, Σ = σ2I3, and write the pdf as

t(x|µ, ν, σ2) =
Γ [(ν + 3)/2]

Γ(ν/2)ν3/2π3/2σ3
[
1 + 1

σ2ν
‖x− µ‖2

](ν+3)/2
. (2)

We used ν = 0.01 and σ = 0.01 throughout all our experiments.

von Mises-Fisher distribution on S2
. The 2 dimensional von Mises-Fisher distribution

(also called the Fisher distribution) is a probability distribution over the unit sphere S2 ⊂ R3.
Its pdf is

v(x|µ, κ) =
κ

4π sinhκ
eκµ

Tx =
κ

2π(eκ − e−κ)
eκµ

Tx, (3)

where µ ∈ R3 is the mean direction and κ ∈ R is the concentration parameter [2, Chapter 9.3].
As x,µ ∈ R3, we can write µTx = cos θ, where θ is the angle between x and µ. Thus,

v(θ, κ) =
κ

2π(1− e−κ)
eκ(cos θ−1) (4)

Furthermore, when κ is large, eκx converges to zero very quickly and for small θ we can write
cos θ = 1− θ2

2
+O(θ2). As a consequence,

v(θ, κ) ≈ κ

2π
e−κ

θ2

2 . (5)

Thus, for small angles θ and large concentration κ a von Mises-Fisher distribution can be seen
as a scaled normal distribution with its mean at zero and the variance σ2 = 1/κ.

We use this observation in Section 3.2.1 to set our parameter κ = θ−2
d where θd is roughly

one standard deviation of a scaled normal distribution over the angles. Thus our remodeling
of the continuous density in log-space can be seen as a Gaussian blur on S2 with a variance
θ2d = 1/κ where we initialize θd to 5◦ and linearly decrease it to reach 2◦, its minimum value,
at the �fth iteration of the entire optimization process.
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B Comparison with Oxholm and Nishino [3]

As stated in Section 4.2 of the main body of the paper, we cannot directly compare our methods
as Oxholm and Nishino [3] were unable to run their method on new datasets and it is not possible
to run our method on their dataset due to poorly calibrated images. To compare our methods
as faithfully as possible, we implemented three variants of their algorithm. Instead of directly
using the probability distributions over the surface normals to drive the shape of the object,
all variants use our two-step optimization. That is, we �rst extract representative normals for
each vertex on the mesh and then re�ne the vertex locations to better explain the normals.

Method 1 This is the method we compare against in the main body of the paper. The
pipeline is identical to ours but we use their method to compute the distributions over the
normals, which does not account for inter-re�ections. More precisely, we compute the per-
vertex distributions over the possible surface normals using the method described in [3, Section
3.1], but use our own smoothness term instead of their priors pc, pa and pe. We also lower the
sampling rate of normal space to match theirs by setting the resolution exponent to Nr = 4.
This results in Np = 3072 samples which corresponds to roughly twice the number of samples
used in [3].

Method 2 Their method is used to compute the distributions over the normals, as in Method
1, and their area priors pa and pe are used when re�ning the surface instead of using our volume
and frontier point terms. The vertices are allowed to be displaced only along their representative

normal during the optimization. We do not perform our post-processing step after optimizing
the surface of the object, instead we recenter and rescale the mesh as described in [3, Section
4].

Method 3 This method is closest to the one described in [3], it is similar to method 2 but
the displacement of each vertex is not constrained during the optimization.

As can be seen in Figures 3, 4 and 5 the �rst method produces noisy results and is unable
to carve deep concavities, such as the palm of HeavyMetal in Figure 4. Method 2 is much
noisier and diverges quickly from an acceptable solution while Method 3 is heavily biased and
makes the mesh degenerate after more than two iterations.

C In�uence of silhouette quality on the reconstruction er-

ror

Our algorithm generates the initial surface from and computes the frontier points using user-
made silhouettes. To gage the impact of silhouette quality on the reconstruction, we performed
two experiments where we perturb the silhouettes of the synthetic object Bunny in the Sponza
scene. One where the perturbations are constrained to be conservative, i.e. they can only grow
the silhouette. The other one performs unconstrained perturbations on the silhouette. The
pertubations are performed by adding Gaussian noise to the contour points with a standard
deviation of σ pixels. See Figure 1 for example silhouettes using di�erent noise levels.

Figure 2 shows, conservative perturbations are easier to recover from. For noise levels of 2
pixels or less, we even converge to result as the ground truth silhouette. On the other hand,
unconstrained noise it harder to recover from, partly because the initial guess produced by
space carving is smaller than the ground truth mesh.
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(a) σ = 1 (b) σ = 2 (c) σ = 3

Figure 1: Example of corrupted silhouettes using di�erent levels of noise. The silhouettes in
the upper row were conservatively, while the silhouettes in the lower row were modi�ed using
unconstrained perturbations.
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Figure 2: The relative reconstruction error with respect to the space carving performed us-
ing accurate silhouettes for Bunny in Sponza. The number in the labels correspond to σ of
the perturbations, c corresponds to conservative perturbations and nc corresponds to uncon-
strained perturbations.

(a) Ours (b) Method 1 (c) Method 2 (d) Method 3

Figure 3: Results for Piggy in Theater after 5 iterations for (a,b,c) and 2 iterations for (d)
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(a) Ours (b) Method 1 (c) Method 2 (d) Method 3

Figure 4: Results for HeavyMetal in Theater after 5 iterations for (a,b,c) and 2 iterations
for (d)
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(a) Ours (b) Method 1 (c) Method 2 (d) Method 3

Figure 5: Results for Teddy in Theater after 5 iterations for (a,b,c) and 2 iterations for (d)
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