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Figure 1: An example of our new Roto++ tool working with a professional artist to increase productivity. The artist has already specified
a number of keyframes but is not satisfied with one of the intermediate frames. Under standard baselines, correcting the erroneous curve
requires moving the individual control points of the spline. Using our new shape model we are able to provide an Intelligent Drag Tool that
can generate likely shapes given the other keyframes. In our new interaction, the user simply selects the incorrect points and drags them all
towards the correct shape. Our shape model then correctly proposes the new control point locations, allowing the correction to be performed
in a single operation.

Abstract
Rotoscoping (cutting out different characters/objects/layers in raw
video footage) is a ubiquitous task in modern post-production and
represents a significant investment in person-hours. In this work, we
study the particular task of professional rotoscoping for high-end,
live action movies and propose a new framework that works with
roto-artists to accelerate the workflow and improve their productivity.
Working with the existing keyframing paradigm, our first contribu-
tion is the development of a shape model that is updated as artists
add successive keyframes. This model is used to improve the output
of traditional interpolation and tracking techniques, reducing the
number of keyframes that need to be specified by the artist. Our
second contribution is to use the same shape model to provide a new
interactive tool that allows an artist to reduce the time spent editing
each keyframe. The more keyframes that are edited, the better the
interactive tool becomes, accelerating the process and making the
artist more efficient without compromising their control. Finally, we
also provide a new, professionally rotoscoped dataset that enables
truly representative, real-world evaluation of rotoscoping methods.
We used this dataset to perform a number of experiments, including
an expert study with professional roto-artists, to show, quantitatively,
the advantages of our approach.
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1 Introduction
Visual effects (VFX) in film, television, and even games are created
through a process called compositing in the post-production industry.
Individual shots are broken down into visual elements that are then
modified and combined, or seamlessly integrated with computer
generated (CG) imagery. This process of assembling each shot from
different sources requires teams of highly skilled artists working on a
range of problems from removing unwanted objects such as rigging;
modifying appearance to create a specific look; combining 2D live
action elements from different clips, to integrating 3D elements to
augment a set; or adding digital effects. A fundamental requirement
of this work is that it is procedural: each effect has to be shared,
reviewed, and modified with multiple iterations between artists,
before being reproduced when rendering the final composite.
Rotoscoping is the technique used in live-action movies to separate
the elements in each shot and allow artists to perform these com-
positing tasks. Imagine a set augmentation where a reflection in
a window is changed or a set extension where futuristic buildings
are added in the background; these tasks both require separation of
all the foreground layers in the shot so that the background can be
updated.

Professional Rotoscoping Rotoscoping itself is a time-
consuming, manual task. It requires the set up of complex shapes to
decompose a shot into the different elements and then tracking or
animating the shapes to match the shot. An experienced artist can
rotoscope on average 15 frames per day, depending on the complexi-
ty of the scene. In big-budget movies, effect-rich shots are routinely
rotoscoped to separate every element ready for compositing, and in
2D to 3D conversion all shots must be rotoscoped to allocate each
item a specific depth in the scene. This rotoscoping work is often
outsourced to dedicated artists, a lengthy process that creates a bot-
tleneck and dependency in post-production pipeline. These artists
are highly trained and very demanding of the tools they use; they
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require complete control over the shapes and contours they produce
since they will often have to draw-in details that are obscured in the
shot by complications such as motion blur or smoke.

Why not Green Screen? The simplest way to achieve the sep-
aration of foreground elements in live-action footage is by using a
green (or blue) screen background so that the foreground elements
can be extracted through chroma-keying, for example using the work
of Smith and Blinn [1996]. This, however, requires the placement
of a screen on-set which interrupts production; it is much simpler
to shoot in a natural environment. Also, there is risk that a screen,
if poorly located or badly lit, will result in blue or green color spill
on the foreground. Furthermore, a screen cannot be used to separate
multiple foreground elements or layers which may be present. Thus,
there is a trade-off between the creative impact of shooting against a
green screen and the cost of rotoscoping in post-production. There
is a clear need to be able to shoot in natural scenes without incurring
large post-production costs for rotoscoping.

Why not Brush-Based Matting? Image matting is a well stud-
ied problem in computer vision. Many techniques have been pro-
posed based on either a trimap that separates a shot into a known
foreground and known background region with an uncertain region
for the matte, or through a scribble interface where a user can anno-
tate a shot to define the foreground and background regions. The
Video SnapCut method of Bai et al. [2009] is an example of the
state-of-the-art in this approach. While there are many use cases
where these approaches perform well, brush or scribble based meth-
ods are universally not used by artists in our target area of high-end
VFX post-production. This is due to the lack of procedural control of
the generated alpha matte that this interaction paradigm offers. The
workflow quickly degrades into an iterative process of defining more
detailed constraints for the optimization to improve the quality of
the matte, at which point it is simply faster to paint the alpha matte
by hand.

Keyframe Paradigm The standard interface paradigm used by
professional roto-artists is that of keyframing. In this framework, the
artist picks a subset of the video frames in a shot to be keyframes. In
each of these frames they create a set of close spline curves around
the same visual element. This is a laborious task since it often
involves moving manually the many individual control points and
tangent vectors that define each spline in each keyframe. The control
points of the splines are then interpolated for the interim frames
between the keyframes [Bratt 2011].
This is time consuming since a number of keyframes may need to
be drawn to achieve the required quality of segmentation. In some
circumstances, the number of keyframes required can be reduced by
using tracking to try to improve the interpolation estimates between
keyframes, for example the work of Agarwala et al. [2004].

Areas for Improvement This leaves us with two main areas to
improve efficiency while still maintaining the workflow that the
trained artists are used to and which affords them the control and
precision they require. The first is to reduce the number of keyframes
required to achieve a high accuracy across a wide range of shot
complexities. The second is to reduce the artist editing time for each
keyframe.

Contributions We provide following three main contributions:
1. Shape Manifold Framework: Working in the existing

keyframe paradigm, we develop a shape model as the artist-
s add successive keyframes. This model is used to improve
the output of traditional interpolation and tracking techniques,
reducing the number of keyframes specified by the artist. Ad-
ditionally, our model allows us to analyze the shot in realtime

and suggest which keyframes the artists should edit next. This
feedback process further reduces the number of keyframes
needed across a variety of different shots.

2. Intelligent Drag Tool: After consultation with professional
roto-artists we have developed a new interactive tool for editing
individual keyframes. Traditionally, global models have been
avoided in the editing process since artists need to maintain
control and do not like local edits to have non-local effects.
Through careful design, we have produced a new tool that ex-
ploits the “global” shape information across the shot, from our
shape model, with a locally constrained editing process. This
new tool reduces the amount of time the artists needs to spend
editing each keyframe. The more keyframes that are edited, the
better the interactive tool becomes, accelerating the process
and making the artist more efficient without compromising
their control and precision.

3. Professional Rotoscoping Dataset: We provide a new, pro-
fessionally rotoscoped dataset that enables truly representative,
real-world evaluation of rotoscoping methods. It comprises a
large number of shots over a range of complexity ratings repre-
sentative of a high-end, live-action movie. The ground truth
data was generated professional artists and comprises over 700
person-days of rotoscoping effort. We used this dataset to per-
form a number of experiments, including an expert study with
professional roto-artists to show, quantitatively, the advantages
of our approach.

2 Background
Both the interfaces and algorithms underpinning rotoscoping build
from research in several domains. We now outline the main con-
nections to color segmentation, contour tracking, and shape models.
In examining these works, one should keep in mind the variety
of everyday rotoscoping challenges, including non-rigid objects,
occlusion and out-of-plane rotation, textured surfaces, changing
illumination/shadows, and blur caused by motion or defocus. In
practice, these situations regularly challenge automatic algorithms,
so roto-artists are distrustful of automation, and insist on override
interfaces [Bratt 2011].

2.1 Related Work

Specifying a Region in 2D or 3D Rotoscoping can be viewed as
semi-supervised segmentation: the user indicates which region they
wish to isolate, in one or more frames of the image sequence. Ideally,
many unlabeled (i.e. untouched) frames would get segmented to the
user’s satisfaction, on the basis of a few frames that they did label.
In practice, the user keeps labeling further frames, until the region is
correctly segmented throughout. This whole process benefits from
giving the user a quick interface for labeling. The target region is
labeled in most interfaces either by having the user trace the region’s
boundary, e.g. [Mortensen and Barrett 1995; Rzeszutek et al. 2009],
or by painting brush-strokes on the region interior [Rother et al.
2004].
Complex boundaries can be tedious to trace, so brush-based methods
are appealing for their interface: a user must only tag enough pixels
as foreground or background to build up the respective color models.
Subr et al. [2013] even do this with some robustness to mis-labeled
pixels. Soft Scissors by Wang et al. [2007] gives users a hybrid
option, where the user’s tracing of the region can be approximate,
and the fast segmentation feedback allows for quick corrections,
compared to the drawing of a trimap that is optimized later [Levin
et al. 2008]. In turn, trimap-driven segmentation is its own subfield,
which strives to segment and model transparency. The Alpha Mat-
ting Evaluation benchmark [Rhemann et al. 2009] has an evolving
leaderboard of top algorithms for image matting, and [Erofeev et al.
2015] is similar for video matting, evaluated on artificially messy



trimaps derived from green screen sequences.
The work of Boykov and Jolly [2001] is one of the cornerstone
methods for treating semi-supervised image and video segmentation
as a single graph regularization problem. The assumptions is that the
inferred labels of neighboring pixels should be similar, unless they
differ in intensity. Other graph-cut based methods such as [Kwatra
et al. 2003; Wang et al. 2005] and geodesic distance optimizing
methods such as [Bai and Sapiro 2007] and [Criminisi et al. 2010]
have explored other models and pairwise term priors.
These single-optimization methods lead to video segmentations that
are adequate for simple video effects. Possibly surprising, the more
work-intensive direct boundary-tracing is almost the only modality
employed by professional rotoscoping artists [SilhouetteFX ]. This is
probably because object boundaries are often camouflaged (e.g. no
visible boundary between the lower and upper arm), and many strong
image gradients can appear as object boundaries, but are in fact
lighting/shadow boundaries or patterned textures. We give our users
such an unassisted boundary-tracing interface for making Bezier
spline outlines, akin to the market-dominant software interfaces.
Post-production pipelines completely depend on roto-curves being
in spline form, but much of our algorithm could proceed unchanged
if the boundary-tracing was assisted.

Tracking a Region It is also possible to split region-specification
and region-tracking into two distinct steps. However, if the region’s
boundary was specified, tracking can dictate how the boundary e-
volves over time. For example, [Grundmann et al. 2010] and [Wang
and Collomosse 2012] automatically construct hierarchical graphs
in the space-time volume. On the other hand, segmentations based
on the superpixels are constrained to follow superpixel boundaries,
which frequently does not coincide with the object boundary. Fur-
thermore, editing is limited to selecting and merging existing su-
perpixels. Boundaries can also be propagated using optical flow
estimates [Tsai et al. 2012; Santosa et al. 2013; Li et al. 2013],
or tracked keypoints [Lebeda et al. 2016] (combined with color
models in [Li et al. 2005]). Trimap propagation using optical flow
has featured in video matting [Chuang et al. 2002], and Wang and
Cohen [2007] provide a good overview of methods to that point.
Nonrigid structure-from-motion techniques can also be used to help
with tracking. The work of Torresani et al. [2008] makes use of a
different representation to recover a low-dimensional model for 2D
non-rigid point tracks. These models have also been used to improve
tracking results [Torresani et al. 2001].

Tracking Shape Boundaries Video SnapCut [Bai et al. 2009]
propagates a user’s sketched boundary frame-to-frame using both
interest-point tracking and optical flow. They train localized ap-
pearance/shape classifiers that hug the region’s boundary. There,
Bai et al. observed that users preferred when their edits changed
segmentation only in nearby frames, without affecting a global color-
model, because that required repeatedly revisiting already-approved
frames in the sequence. In contrast, we update the global model
(though it is a shape model instead of a color model), without re-
quiring the user to revisit previous frames. SnapCut was released as
RotoBrush in Adobe After Effects CS5, and we discuss its usage as
part of our evaluation.
Among academic efforts toward rotoscoping, [Agarwala et al. 2004]
bears the most resemblance to modern production tools, and to our
own approach. Two key features of that work were its interpolation
of user-specified keyframes, and that the interpolation was guided
by shape and image terms. The image term is based on [Lucas and
Kanade 1981], and allows the user to specify, within the search
window, which side of the curve contains the foreground region
that should respect color constancy. This automatic tracking must
be initialized, and then reinitialized by the user, when it falls off
the region boundary. The shape term acts to smooth out the abrupt

changes in time: it prefers for the curve to preserve its length over
time, and for both the changes in curvature and the velocity of points
on the curve to be small.
These are generic objectives, but they help the system interpolate
between keyframes, without too much parameter tuning. Similarly,
Blender’s and Nuke’s rotoscoping functionality leverages a planar
tracker as the image term, often used to stabilize parts of the shot
while the user edits roto-curves to handle remaining motions. Our
approach integrates the best available tracker as the image term, and
uses a global (per-shot) shape model that learns progressively as
keyframes are added. The Blender [Blender Online Community
2015] planar tracker that we use in our tool is an extended version
of the Benhimane and Malis [2004] tracker using the fast ceres
solver [Agarwal et al. 2015].

Shape Manifolds There is a large literature on subspace mod-
els for modeling shapes. In the 3D domain active shape models
[Cootes et al. 1995] fit a low dimensional linear model to a set of
fiducial points to capture a subspace of deformations. This model
has been applied to object tracking in video [Baumberg and Hogg
1994]. Similarly, tracking and reconstruction using a learned 3D
shape model has recently been used in motion capture [Loper et al.
2014]. Particularly related to our approach are methods that use the
Gaussian Process Latent Variable Model (GP-LVM) (see Section 4)
to build manifolds of shape. The GP-LVM is an unsupervised learn-
ing method that creates generative models and has been shown to be
effective in graphics tasks, for example style generation in inverse
kinematics [Grochow et al. 2004].
The use of the GP-LVM in shape modeling can be categorized
by the choice of representation. Prisacariu and Reid [2011] used
shape manifold models for 2D tracking of curves using elliptical
Fourier components; they focused on real-time automatic tracking
and have no mechanism for user guidance or interaction making the
leap to rotoscoping unclear. The same representation was used by
Turmukhambetov et al. [2015] to build a joint manifold of object
contour and ellipses to assist users with sketching. Object outlines
can also be encoded as signed distance transforms as in the work
of Dame et al. [2013] which uses shape models in 3D as surface
priors. Finally, Campbell and Kautz [2014] demonstrated a shape
model that represented the curve directly as a poly-line although they
considered the space of font outlines which are originally composed
of Bézier curves. This is closest to our model, where we identify that
the roto-curves are typically manipulated as a set of closed Bézier
curves. We show that we can use the GP-LVM to model the curves
directly in Bézier space resulting in a very efficient learning and
synthesis algorithm that allows our framework to update and respond
to user events in realtime.

2.2 Existing Rotoscoping Approaches

We now turn our attention to the keyframe and spline based workflow
mentioned in the introduction. This is the framework used currently
by professional roto-artists in film production [Bratt 2011]. As
part of our research for this work, we conducted interviews with a
number of professional roto-artists from different post-production
houses. This survey identified the actual techniques used in the real
world and the artists’ requirements for rotoscoping tool they would
use.

Standard Workflow To rotoscope an element in a shot, an artist
creates a set of closed splines that define the component shapes for
the element. To rotoscope a person, for example, roto-shapes are
created for each articulated element such as the upper and lower
arms, hands, fingers and face. The artist then manipulates these
shapes independently to match the movement in the shot. The
rotoscoping task starts with an analysis of the shot to understand the
movement and how to break up the scene into individual shapes. A
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Figure 2: The difficulties of appearance based approaches: an
example of the state-of-the-art mask propagation [Fan et al. 2015].
We propagate the GT curve from the reference frame (Frame 14) to
the adjacent frame (Frame 15). Comparing to the ground truth on
the right. The method gives 16.7 average pixel error on a full HD
image, and takes 23.45 seconds for computation.

key pose is then selected that defines the outline of each shape, the
artist then works outwards to animate the shape.

Keyframe Interpolation Initially the animation is performed us-
ing a rigid body transformation using handles to define the transla-
tion, rotation, scale and skew for the shape as a whole. Non-rigid
deformation is then created by selecting and transforming individ-
ual control points. Where possible this may be done by modifying
groups of points. There are two standard approaches to creating
the animation, either by matching key poses over the shot then
successively subdividing and adding intermediate keyframes where
necessary, or by proceeding sequentially through a shot creating a
keyframe every nth frame. The remaining frames in the shot are then
linearly interpolated from their neighboring keyframes.

Acceleration with Tracking Efficiencies in the workflow can be
obtained if the shot allows some form of tracking to be performed.
In the ideal case of a rigid scene observed by a match-moved cam-
era, geometric constraints can be exploited to correctly move the
roto-shapes. Such scenes are designated as easy shots and are not
considered further here. A more realistic scenario is that of a moving
element which is distinct in the shot. In this case, it might be pos-
sible to use 2D to drive groups of control points or planar tracking
could be used to define a rigid body animation.
Tracking usually uses a gradient-descent based optimization to match
image appearance across image frames [Lucas and Kanade 1981].
Planar tracking uses a similar framework, where pixel regions are
tracked based on a parameterised warp between frames for pixels
inside a mask. These approaches can extend the search range and
accelerate tracking by matching pixels from coarse-to-fine in image
pyramids [Baker and Matthews 2004]. If clearly defined edges are
available in the video, direct curve tracking is an effective option,
for example [Agarwala et al. 2004].

Limitations Although tracking approaches help under some cir-
cumstances, often shots are too complex for them to be used reliably
and artists are forced to fall back on keyframe interpolation [Bratt
2011]. For example, point tracking on individual control points is
often brittle; the control point on a contour may not have a stable
appearance and the tracker will be prone to drift. On the other hand,
planar tracking is often over constrained and real-world shots con-
taining deformable elements, such as faces, violate their constraints.
Direct curve tracking requires edge fitting but edges are not neces-
sarily distinct which forces the use of strong regularization that loses
details.

Figure 2 provides an example of the difficulties of relying on appear-
ance with the complex roto shots. It shows a mask propagation result
using the state-of-the-art method of Fan et al. [2015]. The errors
arise because the real-world shot contains a lack of features, illu-
mination changes and non-rigid deformation that make appearance
unreliable. These common difficulties may affect the interpolation
results in the rotoscoping.

Our Approach To overcome these limitations, we identify that
appearance alone is often unreliable and therefore place a strong
emphasis on modelling shape. We take appearance information
from real-time tracking and combine it with a novel manifold shape
regularisation to produce a new generative model of rotoscoping.
Unlike previous approaches, our single, unified model does not
simply smooth or interpolate between keyframes, but is capable
of extrapolating and generating new shapes; these are driven by
the tracker but still representative of the overall shape statistics to
prevent drift. Our results counter the conventional interaction adage
that one cannot use global models (from multiple keyframes) since
artists want edits to apply locally; in fact, the probabilistic model
allows us to provide novel suggestions and interactions that save
artists’ time.

2.3 Key Artist Requirements

There are several important requirements, put forward by artists,
to support the creation of roto-shapes for VFX work in film post-
production.

1. The tools need to retain the existing workflow that artists are
familiar with; they need to augment and accelerate the roto-
scoping process.

2. The workflow should be fast and intuitive; artists are accus-
tomed to working with an interactive tools with instantaneous
feedback.

3. The result needs to be procedural and reproducible so that they
can be shared, reviewed, and iterated between artists.

4. The results need to be predictable and controllable; when an
artist works through a shot there must be no recomputation
that changes a previously finalized frame.

2.4 Baselines

Finally, we summarize our findings on existing approaches by
proposing the baselines to which we will compare our new roto-
scoping tool:

1. Keyframe Interpolation: This straight forward approach is
still commonly used since it is predictable and can be used
when other approaches fail.

2. Planar Tracking: This is the most commonly used tracker for
a range of shots and artists are usually able to predict when
tracking will break down and take appropriate steps.

In addition to these two baselines we consider the most relevant
previous academic work to ours, the curve based tracker of Agar-
wala et al. [2004]. To compare against the other dominant paradigm
for rotoscoping, we also investigate the interaction of Video Snap-
Cut [Bai et al. 2009], in particular as the RotoBrush tool in Adobe
After Effects.

3 Our Roto++ Tool

3.1 Design

We designed a new tool to work with artists to accelerate the roto-
scoping workflow while also overcoming some of the main limi-
tations (Section 2.2) and respecting the artists’ requirements (Sec-
tion 2.3).



Figure 3: An example manifold for the arm roto sequence. As we
move across the manifold the shape of the arm changes smoothly.
Even though the roto-curve contains 87 control points (to account
for the ripples in the shirt) the sequence can be perfectly recovered
from a 2D shape manifold. (Note: we observe a complete change
in object appearance as the character moves from light to shadow;
this sort of sequence represents a significant challenge to techniques
that track edges or make use of color models).

Tracker Drift Tracking is known to reduce required keyframe
count when it works well but the most common failure mode is for
the tracker to drift in difficult situations. This yields roto-shapes
which depart significantly in shape from the edited keyframes. The
strong regularization of Agarwala et al. [2004] can help to prevent
drift but limits the output to smooth interpolations of the keyframes.

Shape Manifold To overcome this limitation, we propose to com-
bine the output of the tracker with a strong prior on the possible
roto-shapes. We learn a statistical shape model from the existing
keyframes the artist has created. We then constrain the intermediate
frames to be as close to the tracker output as possible while still be-
ing valid shapes from the shape model. This means that if the tracker
output drifts away from the realm of reasonable roto-shapes, the
output presented to the user will remain reasonable. As the user adds
more keyframes, our shape model becomes more and more accurate,
resulting in even better estimates for the intermediate roto-shapes.
This model takes the form of a generative, low-dimensional manifold.
The original keyframes are points in this space and our hypothesis is
that other regions of the manifold will generate distinct but similar
shapes that are likely to include the correct shapes for the intermedi-
ate frames. Figure 3 provides an illustrative example of our shape
manifold. The roto-curve defining the lower arm has been embed-
ded in a 2D manifold with the highlighted points corresponding to
the locations that generate the different roto-shape in each frame.
The line connecting the points together denotes the passage of time
from frame to frame; we note that the roto-shapes lie on a smooth
trajectory.

Choice of Manifold Model We use a Gaussian Process Latent
Variable Model (GP-LVM) [Lawrence 2005] as part of our global
model of the joint probability between the control points both within
and between frames since it is generative, Bayesian and non-linear.
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Figure 4: A screenshot of our interactive tool Roto++. This user
interface consists of a design view, design tools, roto tools and a
timeline. This timeline encodes our frame selection feedback by
using colored borders. A full user guide to our tool is included in
the supplemental material.

Previous approaches only regularise trackers with local proxies such
as smoothing over neighboring keypoints in time and space. Linear
subspace models, such as ASMs, are trained with a large dataset. Our
approach is targeted towards few training examples (the keyframes),
benefiting from being Bayesian, and the non-linearity is known to
capture more variance in fewer dimensions [Prisacariu and Reid
2011]. Our model actually subsumes linear models and is more
general. Other models, such as [Agarwala et al. 2004], are neither
Bayesian nor generative and therefore cannot be used to provide
user suggestions or the intelligent drag tool.

Keyframe Recommendation Another advantage of constrain-
ing our predicted roto-shapes to come from our shape model is that
we can identify frames when the tracking result departs heavily from
our shape model. This could mean one of two things, either the
tracker has drifted and needs to be reinitialized, or the shape model
is not sufficiently well-defined to include all the valid shapes. Thank-
fully, both of these situations are remedied by the user labelling the
frame as a keyframe. To make use of this result, we provide the
artist with helpful feedback. We suggest which keyframe will most
help the most to improve the tracker, the shape model, or both to
produce better interim shapes.
To update the shape manifold it is necessary to know when a new
keyframe is added. We therefore asked the user to formally specify
when they have finished editing a keyframe. When a new keyframe is
added, the shape model is updated and the tracker is recalculated, all
in realtime. This improves the unedited curves and updates the frame
recommendation system. Once a frame is labeled as a keyframe it
will never be changed by the system ensuring that future editing will
never corrupt a checked result.

3.2 User Interface

We implemented an interactive tool, Roto++, to evaluate our ap-
proach, as shown in Figure 4. The interface aims to provide a
familiar look and feel to existing tools while adding our advanced
functionality behind the scenes. Our Bézier curve based tool consists
of a Design View and a collection of Design Tools and Roto Tools
brought together with a Timeline:
• Design Tools: a common subset of curve-drawing operations

of leading commercial software.
• Roto Tools: a range of tools for setting keyframes, getting

instant feedback from the solver, and for some under-the-hood



roto-related features.
• Timeline: a thumbnail-sized view of the shot. Color coding on

a thumbnail’s border shows the status of that frame. We also
use this view to indicate to the artist our recommendation for
the next frame to edit to improve the result.

For a typical use case, when a new project is created, all the thumb-
nails of Timeline are labeled as Black. If the user edits any point or
curve, the related thumbnail is then labeled as Yellow. Once the user
confirms a curve, the related frame is considered as a new keyframe
(Green). If more than one keyframes are annotated, the system
automatically generates curves for all the frames in between (Blue).
And the system also recommends frames (Red) for attention from
the user.
As well as the icons on the toolbars, all of our tools were accessible
via shortcut keys which were configurable and set to emulate industry
standard tools. For speed of operation, roto-artists make use of pen
tablets, rather than a mouse, for input, so the tool was configured to
operate in a similar fashion to standard tools. A user guide for the
features of the Roto++ tool is provided in the supplemental material.

Comparison Modes To provide a comparison to the baseline
methods discussed in Section 2.4, we built in three different modes
of operation into the tool.
• Mode 1: Our approach; all Roto++ features.
• Mode 2: Planar tracking forwards and backwards.
• Mode 3: Linear interpolation.

Instrumentation To provide a detailed evaluation of our method,
the tool is highly instrumented to maintain a detailed log of all the
user operations performed down to the level of individual mouse
operations. Accurate timestamps were recorded allowing us to
determine the time spent performing different operations. We also
logged the current state of the roto-curves periodically to allow us to
determine the accuracy of the roto output as a function of artist time
expended.

3.3 Interaction

The features presented in Section 3.1 aim to reduce the number of
keyframes that an artist needs to supply to produce an accurate out-
put. While this is clearly advantageous, it is only half the story. To
further improve efficiency, we would also like to reduce the amount
of time spent labeling each keyframe. Beating the baseline is a chal-
lenging task since artists are highly trained and have, in many cases,
years of experience using these techniques. Furthermore, they have
exacting requirements on interaction, as discussed in Section 2.3; the
most relevant are the need for intuition and instantaneous feedback
combined with predictable results that do not corrupt previously
edited results.
The limiting factor on the editing time of a keyframe for baseline
methods occurs when deformable shape changes occur that cannot
be accurately tracked. In most cases, the artist is then forces to
edit the roto-curve control points or tangent vectors in small groups
or individually. This can require a very large number of mouse
operations to select the points in turn and move them to their correct
locations. This is illustrated by the baseline operation in Figure 1.

Intelligent Drag Mode To assist with this editing, we can once
again exploit our shape manifold. Once the manifold has been
trained, new shape proposals can be generated very efficiently from
locations on the manifold. This means that we can generate new
sets of plausible shapes to match any input from the user. Figure 5
provides a toy example of this operation using a variety of different
shapes as example keyframes. As the user selects a point on the
curve and drags it, our solver uses the manifold to suggest the new
best fitting shape in realtime.

When used in Roto++, we provide further control by letting the
artist first select which control points on the curve they would like to
update. The other points will remain fixed ensuring the requirement
that if a user is happy with part of the outline, another editing
operation will not corrupt it. Once the points to move are selected,
they can be dragged to a new location. In realtime we run a cut-down
version of our tracking solver which replaces the tracker result with
the new curve location under the drag operation and then solves for
the new shape recommended by the manifold. Figure 1 shows the
same result achieved by a large number of control point moves being
performed in a single operation with our intelligent drag tool. The
operation of the tool is perhaps more clearly demonstrated in the
video included in the supplemental material.

4 Technical Approach
In this section we describe how we implement the new features
in our Roto++ tool described in Section 3. We first describe the
notation used throughout this section. Subsequently we detail how
we obtain our shape manifold from a set of keyframes edited by
the artist. We then provide details on how to combine our shape
manifold with an existing tracker to create the Roto++ solver that
estimates the roto-shapes for the unlabeled frames. Finally we show
how this solver may be used to provide the intelligent drag tool.

4.1 Notation

Table 3 in Appendix A details the notation used in this section.
Throughout, we assume that we are operating on a single, closed
roto-curve in a single shot. Our results can be applied in parallel to
multiple roto-curves in a straight forward fashion. We also assume
that there is no distinction between an interpolation control point and
an tangent control point on a Bézier curve. Our closed roto-curves
are made up of a closed sequence of cubic Bézier curves, each of
which contains 4 control points with the last control point of the
curve forming the first control point of the subsequent curve.
The kth keyframe spline is denoted Uk where

Uk =

 U(k)
x,1 U(k)

x,2 U(k)
x,3 . . . U(k)

x,M
U(k)

y,1 U(k)
y,2 U(k)

y,3 . . . U(k)
y,M

 ∈ R2×M . (1)

This is illustrated in Figure 13 in Appendix A. The output splines
are given as {Yn}. Note that for consistency, we enforce that Yk = Uk
for all keyframes k; we would like to produce good estimates for the
remaining output splines.
All the keyframe splines must have the same number of control
points (M). This is straight forward to maintain; if the artist would
to add a new control point on any keyframe, the appropriate Bézier
curve is subdivided at the same parametric location in all other
keyframes. The manifold may then be recomputed with the increased
number of control points.
It is important to note that we need a minimum of two keyframes
(ideally three) before we can begin to construct a shape manifold.
For this reason, the artists are asked to produce keyframes for the
first and last frame before progressing. This allows the shape model
to initialize; before these keyframes are present the system operates
without the shape model.

4.2 Overview

Our solver may be broken down into three stages. We first esti-
mate a rotation, translation and scale for each keyframe spline. We
then remove this rigid body transformation to a produce a set of
normalized keyframe splines which are aligned with one another.
The differences between the normalized splines are now only the
changes in deforming shape which is what we want to capture with
our shape manifold.



Figure 5: A toy example of using our Intelligent Drag Tool for interactive curve editing. The manifold can be used to propagate edits to a
single curve using shape information from the curves of all keyframes. To change the shape efficiently, the user can simply grab a location on
the curve (examples are illustrated by red,blue, and purple dots) and drag it different directions. As the user drags the control point to a new
location, our solver immediately infers the change in location on the manifold then gives best fitting shape to the current curve. Note that all
the curves generated are representative of keyframe curves.

We then take the normalized keyframe splines and fit a generative
manifold model to their shape. This model embeds the high dimen-
sion spline data (the collection of all the Bézier control points) into
a very low dimensional space such that every location in the low
dimensional space maps to a different shape that interpolates and
extrapolates from the keyframes. Furthermore, this low dimensional
space is smooth such that smooth changes in the manifold space
represent smooth changes in the high dimensional splines.
Finally, once we have learned the manifold model we are able to
run our solver. Here we can take tracking data from any source and
combine it with the shape manifold to produce a robust output where
the roto-shapes are smoothly varying representative shapes, even
when the tracking fails. This allows the user to insert keyframes and
produce their desired shape quickly, even when parts of the spline
are unable to track edges or other image features.

4.3 Keyframe Alignment

We align the keyframe splines by estimating a rotation θk, translation
tk, and scale sk for every keyframe. We do this to a high degree of
accuracy by using an energy model to estimate the transformation
and a reference shape at the same time as a generalized Procrustes
analysis problem. We denote the mean reference spline as R. For
each keyframe k, our alignment energy is

E(k)
align(Uk, θk, tk, sk,R) =

M∑
m=1

U(k)
x,m

U(k)
y,m

− (
skQk

[
Rx,m
Ry,m

]
+ tk

)2

(2)

where Qk is the 2D rotation matrix

Qk =

[
cos(θk) −sin(θk)
sin(θk) cos(θk)

]
. (3)

We solve for the energy

Ealign({Uk, θk, tk, sk},R) =

K∑
k

E(k)
align(Uk, θk, tk, sk,R) (4)

over all keyframes to find the optimal {θk, tk, sk}. We initialize with
the mean shape and linear estimates for the transformation variables
before applying the non-linear least squares Ceres solver [Agarwal
et al. 2015] directly to Equation 4 using the Gauss-Newton L-BFGS
method.

Normalizing the keyframes Once we have obtained the rotation,
translation, and scale estimates we can produce normalized keyframe
shapes {Yk} by removing the rigid body transformation asY(k)

x,m
Y(k)

y,m

 = QT
k

 1
sk

U(k)
x,m

U(k)
y,m

− tk

 ∀ m,k . (5)

4.4 Generating the Shape Manifold

Once we have the normalized keyframe splines, we are able to learn
the shape manifold. We use the Gaussian Process Latent Variable
Model (GP-LVM) [Lawrence 2005] to produce our shape manifold.
While this is a standard model in machine learning, we include a
brief introduction in Appendix B.
There are two outputs from the manifold learning process. The
first is a set of low dimensional locations {xk} that correspond to
the normalized keyframe splines {Yk}. The second is a non-linear
mapping function F(·) that maps from the low-dimensional manifold
locations to produce output splines. The two outputs are related in
the sense that the function will reproduce the keyframe splines from
their manifold locations such that

Yk = F(xk) ∀ k . (6)

Once the manifold is learned, the mapping function is very effi-
cient to evaluate as a matrix multiplication (for further details see
Appendix B, Equation 20). We should also note that the training
complexity of the GP-LVM is governed by the number of keyframes
K, not the number of control points of the splines themselves. There-
fore, training of the model is very efficient and may be performed in
realtime for shots with typical frame counts.

Manifold Dimensionality The dimensionality can actually be
learned automatically using auto-relevance determination kernel-
s [Rasmussen and Williams 2006] as in the Bayesian GPLVM of
Titsias and Lawrence [2010]. We used this in early experiments on
the roto dataset and found that the most common dimensionality
was 2 which we then used in the tool. While we could adaptively
estimate the dimensionality dynamically, in practice there was lit-
tle advantage and it is a slower optimization to perform; a lower
dimensionality also speeds up our interactive response times.

4.5 The Roto Solver

As we have seen in Figure 3; once we have obtained a shape manifold
from the keyframes, we expect the splines of intervening frames to
be generated from locations in the manifold (since they generate
appropriate shapes). Furthermore, we expect the path taken in the
manifold space between frames to be smooth since nearby manifold
locations will generate similar, smoothly varying shapes. To take
advantage of this we use the manifold to constrain an energy model.
We may take data terms from any type of tracker (e.g. based on
points, planes, edges, color, etc. . . ) to try and push and pull the roto-
splines between the keyframes but we constrain the estimated shapes
to be generated from a location on the manifold with neighboring
frames to have nearby manifold locations.



Tracker Selection We consider several popular rotoscoping
trackers: KLT, the Nuke Planar Tracker, and the Blender Planar
Tracker. These implementations are comprehensively compared on
our ground truth dataset (see Figure 7). We used the Blender Planar
Tracker in our final approach for the Expert Study (see Section 5.3)
since it was the best tracker with a publicly available implementa-
tion, and has been widely applied by the opensource community. It
also provides realtime performance; this is vital in order to update
seamlessly when new keyframes are added. It is important to note
that our model is capable of fusing information from any other track-
er. However, we cannot integrate proprietary trackers directly into
our tool since we do not know how they are implemented. We also
observe that many more advanced or proprietary trackers will not
run in realtime.

Tracking Residuals For each output frame n (between the
keyframes) we estimate a manifold location xn that will generate
a normalized spline Yn. We then combine these with estimates for
a rotation θn, translation tn and scale sn. This gives us final spline
which we may compare with L different trackers which output points
p(l)

m,n for the mth key point for tracker l ∈ [1..L]. We note that we do
not need dense tracks for every key point or for every frame. The
residual for the lth tracker of the mth point in the nth frame is given
by

Ctrack(l,m,n) =

[
snQn

[
F(xn)

]
m + tn

]
−p(l)

m,n . (7)

Again, Qn is the 2D rotation matrix of angle θn.

Smoothness Terms As well as the tracker terms, we include
costs that penalize large discontinuities between consecutive frames
in the the manifold space, and in the transformations (rotation, trans-
lation and scale). These residuals take the form

Cmanifold(n,n′) = xn −x′n (8)

Crot(n,n′) =

[
cos(θn)
sin(θn)

]
−

[
cos(θ′n)
sin(θ′n)

]
(9)

Ctrans(n,n′) = tn − t′n (10)

Cscale(n,n′) = sn − s′n (11)

where n and n′ are neighbouring frames.

Final Energy The final energy may be expressed as a sum-of-
squares with appropriate weights being allocated to the smoothness
terms

Esolver =
∑

l

∑
m

∑
n
‖ρ

(
Ctrack(l,m,n)

)
‖2+

λmanifold

∑
n,n′
‖Cmanifold(n,n′)‖2 +λrot

∑
n,n′
‖Crot(n,n′)‖2+

λtrans

∑
n,n′
‖Ctrans(n,n′)‖2 +λscale

∑
n,n′
‖Cscale(n,n′)‖2 . (12)

The function ρ(·) is a robust loss function to protect against errors
from the tracking data (for example a tracker that has failed and
drifted away). We use an aggressive loss function

ρ(c) = arctan(c/γ) (13)

with a scale parameter of γ = 10 pixels to discount outliers. The
weight parameters in the energy were set to λmanifold = 0.001, λrot =
0.1, λtrans = 1.0, and λscale = 0.1. These parameters were determined
by running the solver over a random subset of the ground truth
rotoscoping dataset (Section 5.1) with a range of different settings.
The L2 (Euclidean) norm between the estimated and ground truth

spline control points was used to determine which settings were the
most successful. None of the sequences used in the experiments
(Section 5) were used to train the parameters. We found our method
was robust to parameter choice since all the terms have natural
normalizations. The manifold locations have a prior to have a unit
Gaussian distribution, the translations may be normalized by the
frame size, the scales by the keyframes and the rotations have an
inherent scale.

Optimization Details For each of the optimizations we made use
of the highly efficient C++ Ceres solver [Agarwal et al. 2015] for
both non-linear least squares (using the Levenberg-Marquart algo-
rithm) for Equation 12 and non-linear unconstrained optimization
(for the GP-LVM learning). In all cases we either obtained explicitly
coded analytic Jacobians and derivatives (for example to exploit
sparsity in the GP-LVM kernel gradients) or made use of the effec-
tive auto-differentiation code built into the solver. In particular we
can obtain efficient analytic derivatives of the GP-LVM prediction
function in Equation 20 to calculate the Jacobian of Equation 7.
When performing the GP-LVM learning we initialized the low di-
mensional space with linear PCA. The high dimensional training
data (the keyframe curves) were normalized to have zero mean and
unit variance and then the hyperparameters and noise precision were
all initialized with unity. The hyperparameters were given an un-
informative log-Normal prior with unit variance. Everytime the
GP-LVM was relearned the parameters were reinitialized; this does
not create problems with the keyframes moving around since they
are all guaranteed to return the same shape since the keyframes are
fixed shapes used to train the GP-LVM.
The roto solver optimization of Equation 12 was initialized by lin-
early interpolating the scale, translation and rotation parameters
between the keyframes. The manifold locations were initialized by
linear interpolation between the corresponding keyframe manifold
locations. We will release a reference implementation of the model
along with the Roto++ GUI tool.

4.6 Interaction

Timing The multithreaded, C++ implementation of our solver
is very efficient with all three optimizations normally performed
in a fraction of a second, increasing to a second for the longest
shot (150 frames) we tried. This is clearly advantageous for an
interactive workflow, where the addition of a new keyframe can be
propagated in realtime. Another advantage is that we solve for the
whole sequence at once so there is no waiting whilst information
propagates frame by frame. The speed of the trackers can vary by
type and implementation. The fastest planar trackers also solved in
under a second for average length sequences (30 frames).We note,
as well, that the initial solve is always longer and as keyframes are
added, any trackers only need to update locally.

Next Keyframe Recommendation The suggestions for the next
keyframe to edit are obtained by comparing the output of the tracker
and the output of the solver. The L2 (Euclidean) error between the
control points from the solver and from the tracker is calculated.
If this error is lower than an artist determined threshold (we used
0.5 pixels) the frame is ignored. The remaining frames with larger
errors are ranked in descending order of errors and the top 10% of
the frames are labeled as suggestions for the artist to edit.

Control Point Insertion If the user wishes to insert a new con-
trol point into an existing curve we subdivide all the roto-curves
in all other frames at the same parameter value so that the curves
themselves do not change shape (simply contain an additional con-
trol point). This does not corrupt the manifold since the changes
will not be incorporated until the keyframe is marked as finished by
the user. At this point the manifold will be update but all existing
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Figure 6: An illustrative example of the Intelligent Drag Tool.

keyframes (that are marked as finished) will not be modified even
if their locations on the manifold are changed since they form the
training data for the GP-LVM.

Intelligent Drag Tool Figure 6 shows an illustration of how the
intelligent drag tool is implemented. First the artists selects the
control points that they wish to move. The selected control points
are then dragged to a new location; this defines a new curve, shown in
purple, made from the unmoved control points and the new positions
of the selected points. As the dragging occurs, this new curve is fed
into the roto solver as if it were a tracker output. The solver will then
estimate a new position for the selected control points that obeys
the shape manifold in realtime. Once the artist is happy with the
shape they can release the drag and the new positions will be applied.
In order to prevent unwanted movement, only the selected points
will be moved and the unselected points will retain their original
positions, even if the manifold would have moved them to new
locations. This allows the tool to be used to create new keyframes
that do not currently exist on the manifold.

5 Experiments
5.1 Real-World Rotoscoping Dataset

To evaluate our method we produced an extensive rotoscoping
dataset specifically designed to be truly representative of real-world
commercial rotoscoping in the post-production industry.
The dataset consists of a five minute short movie , that has been
professionally rotoscoped by a services company that works on
preparation and compositing for high-end VFX and stereoscopic
conversion across film, television and commercials. This dataset will
be made available under the Creative Commons license agreement
(by-nc-sa)1 for non-commercial use.
The short movie depicts a story unfolding around a night club and
contains shots typical to live-action movies. This represents the
range of complexity for rotoscoping that would be expected in live-
action film post-production. The footage covers the space of roto-
shapes that would be required, from simple rigid objects, to isolated
articulation motion, more complex articulations with occlusions and
intersections, and thin structures for close-ups of hair. The scene
content and camera effects cover locked-off and hand-held camera
moves, shifts in focus and motion blur, close-up and wide-angle
shots, and bright and dark environments. They also include isolated
and interacting characters, plus complex environmental effects with
water.

Rotoscoping Effort The dataset is broken down into 158 shot-
s, with over 10,000 frames of footage. The shots range from 13
frames to over 300 frames long, with an average shot length of 67
frames; the majority of shots in live-action movies are less than 100
frames long. The shots have been rotoscoped to separate the main
elements and the rotoshapes are provided as a script for each shot for
compositing software typically used in post-production for high-end
VFX.

1https://creativecommons.org/licenses/by-nc-sa/3.0/

Complexity Typical Shot Description Rating

Easy • Single isolated characters 1
• Trackable objects
• Simple manual keyframing 2

Medium • Limited motion blur
• Limited articulation 3
• Several characters

Hard • Lengthy camera shots 4
• High-speed shots with motion blur
• Many characters with detailed articulation
• Detailed shapes for hair / fur 5

Table 1: Complexity examples for different rotoscoping shots. Rat-
ings and descriptions provided by professional artists.

Complexity Rating Number in Dataset Rotoscoping effort

2 38 shots 28 frames / day
3 94 shots 14 frames / day
4 14 shots 11 frames / day
5 12 shots 6 frames / day

Table 2: Breakdown of the complexity and rotoscoping effort re-
quired in the rotoscoping dataset. The total effort for the entire
dataset was 734 person days. Ratings and effort provided by profes-
sional artists.

Shot Complexity The dataset has been categorized by profession-
al artists on a scale (1) - (5) to define the amount of effort required in
rotoscoping. This is a sliding scale from (1) which represents an easy
shot that can be tracked to (5) which is the most complex with highly
detailed interacting shapes. Table 1 provides further information
with typical examples of the types of shots at each rating. Table 2
details a breakdown of the shots present in the dataset. The simplest
shots consist of a static camera or slow pan with limited detail, and
the most complex contain detailed hair strands, motion blur, water
bubbles, dust, and debris. The effort to rotoscope the data-set was
a total of 734 person days with an average of 14 frames per day.
Table 2 also shows the relative efforts for different shot ratings.

Errors All of the shots are recorded in HD and a typical error of
a few pixels is within the motion blur of the majority of scenes at
this resolution. For professional artists to achieve sub-pixel accura-
cy for this footage would require feathering to be used which we
do not currently have data for. We discuss this as future work in
Section 5.4.

5.2 Roto Solver Evaluation

In our first evaluation we evaluate our solver against some bench-
marks (Section 2.4) in terms of reducing the number of keyframes
to achieve a given accuracy. We can perform a quantitative eval-
uation of this without including users by taking advantage of the
ground truth of our dataset. We conduct two experiments. In the
first, we uniformly sample keyframes from some test curves and
then determine how accurate the different methods estimate the un-
known interim curves. In the second test we make use of our frame
suggestion feedback to provide the keyframes to the algorithm in
the order it suggests.

Curve Selection In consultation with roto-artists, we picked four
30 frame long shots; each is representative of one or more real-world
effects and/or typical objects. The shots Arm and Head provide
large illumination changes on deformable objects with complex
outlines. The shot Wheel provides large perspective changes of a
rigid object with occlusions. Finally, the shot Face shows a moving

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Figure 7: Quantitative evaluations on selected shots of our Real-World Rotoscoping Dataset. The First Row (from left to right) shows the
shots i.e. Arm, Head, Wheel and Face that represent several typical objects and motions. The Second Row shows the evaluation on the
selected shots by using various interpolation methods, i.e. our Manifold with either Ground Truth tracking (“GT”), Nuke Planar Tracker or
Blender Planar Tracker; the regularization of Agarwala et al. [2004]; the KLT Tracker; and Linear Interpolation. The Third Row illustrates
the performance improvement on our manifold methods using optimal keyframe selection (for methods marked with “+OPT”). Errors (shown
on log plots) are calculated using the RMS pixel error between the control points of estimated curves and the ground truth (both have the same
parameterization).

and turning human face which is among the most typical, but also
challenging, targets for professional rotoscoping. According to the
artists, the human face is the most frequently repeated object for a
movie and it is also a high deformable object that is readily affected
by illumination, blur and occlusion. The top row of Figure 7 shows
some thumbnails from the test shots.

Error Metric Since we use the same input keyframes for each
method (from the ground truth of the dataset) we know that the
roto-splines will be parameterized identically. This allows us to
evaluate the error by considering the RMS pixel error between the
control points of the estimated curves and the ground truth splines.

Experiment 1: Uniform Keyframes The second row of Figure 7
provides the results of various automatic estimation methods on each
of the four shots. The first result to note is that the straight-forward
interpolation methods (either linear interpolation or interpolation
in the manifold) space perform considerably worse than the other
approaches, alongside the basic KLT tracker. This is indicative of
the difficulty of the shots; even after keyframing 20 of the available
30 frames the linear interpolation method has an error above two
pixels.

At the other end of the scale, the GT Manifold result is always the
best performer. This is result obtained if the ground truth is passed
as a “tracker” to our roto solver. It acts as a lower bound on what can
be achieved with the shape manifold; i.e. can the manifold express
all the required shapes after seeing a certain number of keyframes.
Although there is nothing theoretical that prevents other methods

from improving below this line, the fact that is is the best performer
means that we are not losing and representational power by using
the manifold.
Now comparing the two planar trackers, we see that the Nuke tracker
(with its propriety additions) does in general outperform the Blender
tracker by they display similar characteristics. If we combine the
raw trackers with the regularization of Agarwala et al. [2004] we
notice improved performance suggesting that the regularization is
helping to compensate for tracking errors such as drift. However, the
heuristic curve based regularizer is effectively acting as a smoothing
interpolator for the tracking results which limits its efficacy.
Combining the trackers with our shape manifold offers further im-
provement which supports the hypothesis that the shape manifold
should help reduce the number of keyframes that are needed to
achieve a given degree of accuracy. The generative shape model
is learned from the specific keyframes present in each shot (rather
than a generic solution) and is more expressive with its ability to
interpolate and extrapolate shape in a non-linear manner.
The Manifold Interp result provides the output obtained by the direct
application of the method of Campbell and Kautz [2014] and we
can see the comparative improvement of our method that uses a
more complex model containing the manifold regularization and the
tracker guidance.

Experiment 2: Keyframe Suggestion The third row of Fig-
ure 7 shows some of the same results (for reference) combined
with results obtained by selecting the next keyframe according to
the frame suggestion feedback (methods labeled with +OPT). We



can see that by using the suggested frames the GT Manifold result
improves which indicates that the suggested keyframes are more
indicative of the range of shapes in the shot and therefore providing
them as keyframes produces a more accurate shape manifold.

The second result of interest is that making use of the Blender tracker
with the optimal suggestions also results in improved accuracy which
supports our hypothesis that the suggested frames are useful for both
improving the shape model and the tracker result.

Conclusion We can conclude from these automatic experiments
that the combination of our shape manifold helps to improve tracking
results beyond all the baselines across a range of shots. Furthermore,
following the frame suggestion feedback also improves accuracy
such that a meaningful reduction in the number of keyframes re-
quired can be achieved.

While these methods do offer improvement, we should also note the
overall difficulty of the shots. Even with the best methods the artist
will still have to label a significant proportion of the frames in the
shot to achieve professional quality. This motivates our next set of
experiments where we will investigate our interaction contribution
to see if we can reduce the amount of time required to edit these
keyframes.

5.3 Expert Study

To evaluate the Intelligent Drag Tool and our Roto++ tool as a w-
hole we conducted an Expert Study. The aim was to investigate
performance with respect to two baseline workflows in a real-world
situation with experienced rotoscoping artists and shots from a com-
mercial movie. Figure 8 provides an overview of the expert study
that we will now discuss in more detail. First we will describe the
protocol used and then we will analyse the quantitative results.

Evaluation Protocol We invited seven professional roto-artists,
from movie post-production houses, to take part in the study; the
artists all had between two and nine years of rotoscoping experi-
ence. We divided the artists into three teams as shown in Figure 8.
Each team had a similar distribution of experience to allow for fair
comparisons between the teams. Our Roto++ tool was run in three
different modes, Mode 1 presents our method; Mode 2 denotes the
Blender planar tracker; and Mode 3 is the linear interpolation. The
artists were unaware of the technical details of any of the differences
between any of the modes. In addition to our solver, Mode 1 also
made the Intelligent Drag Tool available. The roto artists were in-
structed on how to use it but they were free to use it or not during
the study. Similarly for the next keyframe suggestions.

Figure 8 also shows the four shots given to the artists; these were
chosen from our dataset. Each shot contained 30 frames with one
shot for training and the others for the tests. Each artist was asked
to roto a different shot for each mode to avoid any prior learning
for the shot; every artist used each shot once and each mode once.
The table in Figure 8 shows the randomized ordering used to avoid
bias. The shots comprised three different complexity ratings from
the dataset (Table 1). Test A was level 2, Test B level 3, and Test C
level 4; the training shot was level 2. These shots were chosen to
represent typical photometric effects, i.e. motion blur, deformable
objects, illumination changes and large occlusion.

The artists spent the first 30 minutes working on the training shot
to learn to use the software. They were then required to roto one
curve within 15 minutes for each of the three tests. As described
in Section 3.2, the logging facility of the Roto++ tool was used to
recorded all the interaction. We also took snapshots of the current
roto-curves every 20 seconds for numerical analysis. All the work-
stations involved in this expert study had a similar configuration:
Intel i7 3.00GHz, 16GB RAM and nVidia Quadro K2200 4GB GPU.

Error Metrics Each individual was given an instruction sheet for
the test showing the desired roto shape in the first and the last frame.
Unlike in the previous experiments, because the artists create their
own curves they will not be parameterized in the same manner as the
ground truth. We, therefore, computed the error by rasterizing both
curves to a dense polylines, aligning them and taking the RMS pixel
error. For each test we selected the best experimental subject from
each mode for comparison and we compare our approach against
the two baselines of the planar tracker and linear interpolation. The
variance in the results are from the samples over different experts
in each group. We distributed the experience of the artists evenly
across the groups.

Rotoscoping Time Figure 9 depicts the point error over time
for all baselines on the three different shots. Across all three tests
(differing complexities) our solver improves over the baselines. We
also note that an earlier version of our solver was used for the
expert study that occasionally produced a lag in response (this was
commented on by the experts when they were debriefed). We have
since improved the solver speed by an order of magnitude and
no have no lag in subsequent tests. The dashed line on the plots
represents a replay of the log with the solver times set to the new
speed; this leads to an additional improvement in performance, really
demonstrating the value of our tool.

Shape Interaction Using our instrumentation we were able to
measure various mouse (pen and tablet) operations; the results are
presented in Figure 10. We observe that our solver and intelligent
drag tool require fewer mouse operations and achieve a greater
accuracy. This is due to the value of the intelligent drag tool moving
the control points to the correct location in far fewer moves than
editing individual control points.

Intelligent Drag Mode Figure 11 demonstrates the efficiency of
editing individual keyframes. Every keyframe edited by the artist is
a line on the graph (considered in isolation). Each line is a plot of
the error in the roto-curve of that keyframe against the time spent
in editing the keyframe. The lines corresponding to our method are
located in the bottom left indicating the at the intelligent drag mode
is much more efficient for individual keyframe editing since the error
reduces rapidly in a small amount of editing time.
We also conducted an additional study with a longer sequence (110
frames rather than 30) of the Test A shot; the result is shown in Fig-
ure 12. As well as validating the ground truth results of Section 5.2,
the plot also shows a significant reduction in time taken to edit a
keyframe as more frames are labeled, indicating that the manifold
is becoming increasingly useful as its shape model improves when
presented with more keyframes. We also observe higher initial errors
than previously (when only a few keyframes are provided) since
the manifold takes longer to learn the various shapes present in the
much longer shot (requires more training data).
The other plots in Figure 12 also highlight areas where tracking
fails. While we are also susceptible to failures in tracking, we
can also produce significantly more reliable results than the planar
tracker alone. These are challenging sequences, containing nonrigid
deformation (A), illumination changes (B), and large motion blur
(C) which are very challenging to the tracker. manifold constraint to
produce a plausible shape is particularly valuable in these settings
where it ensures that the artist is presented with a much better starting
point for keyframe editing as well as having the advantages of the
intelligent drag tool.

Further Comparisons We also compared our method to the
brush-stroke interaction method of Video SnapCut [Bai et al. 2009].
During our pilot study we asked artists if they ever used non-curve
based tools with the specific example of the Adobe RotoBrush.
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Figure 8: Our expert study. We invited seven experienced rotoscoping artists for the study; all the artists were asked to roto three different
shots for test after an initial training shot. The shots used represent several main difficult cases for the real-world shots: (T) Training Shot, a
rigid object with camera shake; (A) Test A, nonrigid deformation; (B) Test B, large illumination change; (C) Test C, motion blur and large
shape change. Each team of artists was also required to use different modes (workflow) for different shots in order to avoid prior learning on
specific shot. This was a blind study with the artists unaware of any of the technical details of the different modes. The three modes used were:
M1 Our Roto Solver; M2 Planar Tracker; and M3 Linear Interpolation.
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Figure 9: Quantitative measure of roto accuracy over time for the expert study.. The shaded regions around each error curve represents one
standard deviation. Our approach is more effective than the other baselines with the artists taking less time to achieve a specific accuracy.
During the user study we used a slower implementation of our solver that led to a laggy response. We have since increased the speed of our
solver by an order of magnitude. The dashed line (“Ours no lag”) represents a replay of the recorded log if the solver had been running at the
new speed. We can see that with the solver running at full speed, the improvement is even greater.
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Figure 10: Quantitative measures of mouse move distance, average point error, and number of mouse clicks. The error bars represent one
standard deviation. A mouse click or drag is counted only if it changes the location of a point. Our method achieves lower scores across all
categories while still outperforming the other methods in terms of accuracy.

There was a universal response that this interaction mode was not
widely used for movie postproduction since it was often difficult to
control. We provide illustration of the interaction comparison in the
supplemental video.

Appendix C contains additional results and illustrations. In Fig-
ure 14, we show a qualitative comparison of JumpCut, RotoBrush,
the Mocha Tracker, and our approach for propagation from two
keyframes. In Figure 15 we show a quantitative comparison with

RotoBrush and the proprietary Mocha tool. We observe that our
method performs favourable compared to the commercial alterna-
tives. The Mocha planar tracker confers good performance and we
believe that our method could be further improved by incorporating
this tracker however we cannot perform this test since the details of
the tracker are proprietary.
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Figure 11: Quantitative measure of roto accuracy over time editing individual keyframes. The shaded regions around each error curve
represents one standard deviation. This plots describes the efficiency of each artist on a keyframe by keyframe basis. For each keyframe they
edited we plot the reduction in error over the time spent editing in that keyframe (thus there is a line on the graph for every keyframe edited).
We can see that our method lies in the bottom left corner indicating that the starting errors were lower (due to the improved solver) and that the
time to edit each keyframe was reduced (the intelligent drag mode).
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Figure 12: Quantitative measure on points error of curves against the number of keyframes edited. The shaded regions around each curve
represents one standard deviation. Our method yields best accuracy (especially for the first couple of keyframes) overall. In the first plot, we
illustrate the effect of an extended shot (increasing the number of frames from 30 to 110) for our method. As well as a similar improvement in
accuracy against keyframes as our ground truth evaluation, we also plot the time spent editing each keyframe and demonstrate a significant
acceleration in editing rate as the manifold improves with the knowledge of more keyframes.

Conclusion In conclusion, the user study provides a range of
quantitative data that support the adoption of our new tool Roto++
as a serious contender for professional rotoscoping. This improve-
ment is achieved via a three advantages. The improved solver is more
robust to errors in tracking and provides a measurable reduction in
the number of keyframes required for a given accuracy on challeng-
ing, real-world shots. The keyframe suggestion mode confers two
valuable points in that it identifies frames that simultaneously help
the shape model to improve and reduce the errors in the tracker;
both again help to reduce the number of keyframes. Finally, our
expert study demonstrated that our intelligent drag tool quantifiably
improved the time to edit keyframes when used by professional
artists. This is a very promising result since we should also note that
the roto-artists have years of experience using the two other baseline
techniques and had only been using our drag tool for 30 minutes
before the user study.
During the exit interviews, after the user study, the artists provided
some qualitative feedback. They were very enthusiastic about the
intelligent drag tool and the frame suggestions saying that they
found them to integrate well into their existing workflow and were
useful for real-world tasks. They also liked the clean interface of the
Roto++ tool and said it was enjoyable to work with.

5.4 Limitations and Future Work

Complexity Rating 5 In our work we have not attempted to ro-
toscope some of the incredibly challenging shots. Although these
are not very common, for example they only account for 8% of our
representative dataset, they are known to perform very poorly to all
attempts at automation with the roto artists usually forced to draw in

each frame by hand. This can often be due to completely missing
data, where the artists are using their artistic knowledge to actually
fill in the gaps (for example through thick smoke or very strong
motion blur). These sequences would have taken too long to run for
our expert study; in future work we would like to investigate what
can be done to help artists at these extremes.

Feathering Throughout this work we have not considered “feath-
ering”, the use of soft alpha borders to the segments that vary in
width under the artist’s control. This would be a fairly straight for-
ward extension to our framework since the feather offset for each
control point on the roto-spline could be appended to the vector
modeled by the GP-LVM that could then estimate the feather width
for new frames as well as the roto shape. The main consideration for
not including it in our current model is that the ground truth dataset
does not currently have the feathering information so we would have
no way of evaluating the performance. In the future we would like
to extend the roto dataset with this information.

Appearance Snapping Our intelligent drag tool does not snap
to appearance edges, instead it uses its generative model to suggest
shapes that respect local artist edits. This is more reliable because
it will continue to function in the presence of lighting changes, mo-
tion blur and regions with many/ambiguous edges. The Roto++
tool includes a snapping active contour tool but artists in our pilot
study disliked it; they found it faster to place control points them-
selves. That said, it may well be of use to amateur users and for
simpler videos. As further work we will investigate more advanced
appearance models that may make this tool more useful.



Assistive Curve Creation At the moment we provide no assis-
tance in creating the first keyframe. Although our expert users claim
not to want it, we would like to explore an optional mode that would
help the user create curves in the first place, e.g. incorporating the
snap-to functionality of [Su et al. 2014].
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Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003.
Graphcut textures: image and video synthesis using graph cuts.
ACM Trans. on Graphics 22, 3.

Lawrence, N. 2005. Probabilistic non-linear principal component
analysis with gaussian process latent variable models. Journal of
Machine Learning Research 6, 1783–1816.

Lebeda, K., Hadfield, S., Matas, J., and Bowden, R. 2016. Texture-
independent long-term tracking using virtual corners. IEEE Trans.
on Image Processing 25, 1, 359–371.

Levin, A., Lischinski, D., andWeiss, Y. 2008. A closed-form solu-
tion to natural image matting. IEEE Trans. on Pattern Analysis
and Machine Intelligence 30, 2, 228–242.

Li, Y., Sun, J., and Shum, H.-Y. 2005. Video object cut and paste.
ACM Trans. on Graphics 24, 3.

Li, W., Cosker, D., Brown, M., and Tang, R. 2013. Optical flow
estimation using laplacian mesh energy. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’13), IEEE,
2435–2442.

Loper, M. M., Mahmood, N., and Black, M. J. 2014. MoSh: Motion
and shape capture from sparse markers. ACM Trans. on Graphics
33, 6.

Lucas, B. D., and Kanade, T. 1981. An iterative image registration
technique with an application to stereo vision. In Int. Joint Conf.
on AI, vol. 2, 674–679.

Mortensen, E. N., and Barrett, W. A. 1995. Intelligent scissors for
image composition. In Proc. of SIGGRAPH, ACM, 191–198.

Prisacariu, V. A., and Reid, I. 2011. Nonlinear shape manifolds as
shape priors in level set segmentation and tracking. In IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR).

Rasmussen, C. E., andWilliams, C. 2006. Gaussian Processes for
Machine Learning. MIT Press.

Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., and Rott,
P. 2009. A perceptually motivated online benchmark for image

http://ceres-solver.org
http://ceres-solver.org


matting. In IEEE Int. Conf. on Computer Vision and Pattern
Recognition (CVPR).

Rother, C., Kolmogorov, V., and Blake, A. 2004. “GrabCut”:
Interactive foreground extraction using iterated graph cuts. ACM
Trans. on Graphics 23, 3.

Rzeszutek, R., El-Maraghi, T., and Androutsos, D. 2009. Interac-
tive rotoscoping through scale-space random walks. In IEEE Int.
Conf. on Multimedia and Expo (ICME), 1334–1337.

Santosa, S., Chevalier, F., Balakrishnan, R., and Singh, K. 2013.
Direct space-time trajectory control for visual media editing. In
ACM SIGCHI Conf. on Human Factors in Computing Systems,
1149–1158.

SilhouetteFX. Silhouette 5.2 User Guide 2014.

Smith, A. R., and Blinn, J. F. 1996. Blue screen matting. In Proc.
of SIGGRAPH, ACM, 259–268.

Su, Q., Li, W. H. A., Wang, J., and Fu, H. 2014. EZ-Sketching:
Three-level optimization for error-tolerant image tracing. ACM
Trans. on Graphics 33, 4.

Subr, K., Paris, S., Soler, C., and Kautz, J. 2013. Accurate binary
image selection from inaccurate user input. Computer Graphics
Forum 32, 2, 41–50.

Titsias, M., and Lawrence, N. 2010. Bayesian gaussian process
latent variable model. In Proc. of 13th Int. Workshop on AI and
Stats.

Torresani, L., Yang, D. B., Alexander, E. J., and Bregler, C. 2001.
Tracking and modeling non-rigid objects with rank constraints.
In IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR).

Torresani, L., Hertzmann, A., and Bregler, C. 2008. Nonrigid
structure-from-motion: Estimating shape and motion with hier-
archical priors. IEEE Trans. on Pattern Analysis and Machine
Intelligence 30, 5, 878–892.

Tsai, D., Flagg, M., Nakazawa, A., and Rehg, J. M. 2012. Motion
coherent tracking using multi-label mrf optimization. Int. Journal
of Computer Vision 100, 2, 190–202.

Turmukhambetov, D., Campbell, N. D. F., Goldman, D. B., and
Kautz, J. 2015. Interactive sketch-driven image synthesis. Com-
puter Graphics Forum 34, 8, 130–142.

Wang, J., and Cohen, M. F. 2007. Image and video matting: A
survey. ACM Foundations and Trends in Computer Graphics and
Vision 3, 2.

Wang, T., and Collomosse, J. 2012. Probabilistic motion diffusion
of labeling priors for coherent video segmentation. IEEE Trans.
on Multimedia 14, 2, 389–400.

Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F.
2005. Interactive video cutout. ACM Trans. on Graphics 24, 3.

Wang, J., Agrawala, M., and Cohen, M. F. 2007. Soft scissors: An
interactive tool for realtime high quality matting. ACM Trans. on
Graphics 26, 3.

Appendix

A Notation for the Technical Approach
Table 3 contains a summary of the notation used in Section 4 with
Figure 13 illustrating the layout of the control points for an input
keyframe.

N Number of frames in the shot
n ∈ 1..N Index of a frame
K Number of available keyframes
k ∈ 1..K Index of a keyframe
M Number of control points in the closed spline
m ∈ 1..M Index of a control point
L Number of trackers
l ∈ 1..L Index of a tracker
{Uk} Set of input keyframe splines
{Yn} Set of output splines
θ, t, s The rotation, translation and scale of a spline
Q A rotation matrix
R A mean reference spline for alignment
x A location on the manifold
V = F(x) A new spline generated from the manifold
p(l)

m,n lth Tracker output point for the mth control point
in the nth frame

Table 3: Summary of notation used in Section 4.
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Figure 13: Notation for the control points of the kth input keyframe.

B The GP-LVM
We begin by introducing Gaussian Processes (GPs) and the GP
Latent Variable Model (GP-LVM) which may be used to perform
unsupervised manifold learning. We will then provide details of how
we use this to generate our shape model.

Gaussian Processes Gaussian Processes [Rasmussen and
Williams 2006] represent distributions over functions and may be
used as a powerful tool to learn a smooth, non-linear mapping from
one space x ∈ RQ to another y ∈ RD. They are particularly effective
when mapping between spaces with different dimensions, in our
case we have Q � D, when the vectors of interest in the higher
dimensional space actually lie on a manifold of far lower dimension.
We instinctively believe this to be the case for roto-curves since the
there are a very large number of possible splines that can be drawn
with M control points but only very few of them will map to the
shape of the object we are segmenting.
The GP achieves this mapping by modelling the covariance of the
higher dimensional vectors as a kernel function in the lower dimen-
sional space. If we assume that all our vectors are normalized to have
zero mean then the GP models the probability of a high dimensional
vector y as the multivariate Gaussian

P(y|x) = N (y|0, κ(x,x)) . (14)

Here, κ(x,x) is a kernel function that encodes how distances in the



low dimensional correlate to similar high dimensional vectors.

GP-LVM The GP-Latent Variable Model, [Lawrence 2005], takes
an unsupervised approach to learn a generative model. Unlike, the
standard GP, we only provide a set of high dimensional vectors {yk}
(the training data) and a desired kernel mapping function κ(·, ·). The
GP-LVM then estimates the best corresponding set of low dimen-
sional vectors {xk} that generate the high dimensional vectors when
passed through the GP. Whilst the full derivation is quite involved,
the effect is that we end up with a set of low dimensional vectors
and a mapping function to generate high dimensional vectors that
are representative of the training data. For our purposes we set the
high dimensional vectors to be the spline keyframes (in dimension
D = 2M) and we learn a set of points {xk} in RQ (we use Q = 2) and
a mapping such that for every point in the 2D space, we generate a
different roto spline.
The nature of the mapping between the spaces is determined by the
kernel function. We use the Radial Basis Function (RBF) kernel

κ(xi,x j |α,β) = αexp
(
−

1
2
β‖xi −x j‖

2
)
, (15)

where α and β are the variance and length-scale hyper parameters.
The RBF kernel is inherently smooth, therefore, as we move around
in the low dimensional manifold space the high dimensional space
will also vary smoothly. This provides the desirable property for
using the manifold for rotoscoping: neighboring frames should have
smoothly varying shape and therefore should have nearby embedded
spaces. This is demonstrated by Figure 3 where we embed 19
consecutive roto-curves in a 2D manifold.

Learning the Manifold We learn the manifold model by optimis-
ing the hyper parameters (α,β) a noise parameter (σ) and the em-
bedded locations (X = {xk}) of the corresponding training keyframe
splines ({yk}). We maximise the likelihood of the training examples
factored across each of the dimensions as

P(Y |X,Ω) =

K∏
k

N
(
Yk(:)|0, κ(X,X |α,β) +σ2I

)
, (16)

where Ω denotes the hyper and noise parameters and Y and X are
stacked collections of training row vectors such that

Y =


Y1(:)
Y2(:)
...

YK(:)

 (17)

and similarly for X. Here we used the notation

Yk(:) =
[
Y(k)

x,1 Y(k)
y,1 Y(k)

x,2 Y(k)
y,2 . . .

]
∈ R2M (18)

to unwrap Yk (a 2×M matrix of spline keypoints) as 1×2M row vec-
tor. Also, we use the notation κ(X,X |α,β) to denote the covariance
matrix [

κ(X,X |α,β)
]
i, j = κ(xi,x j |α,β) . (19)

Since the kernel matrix is a non-linear function we use a gradient
based non-linear optimiser to maximise Equation 16 and initialize
the low dimensional vectors using linear PCA to reduce the high
dimensional vectors to the appropriate number of dimensions (Q).
We also place a unit Gaussian prior on the manifold locations to
maintain a natural scale.
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Figure 15: Quantitative measure of error against time for shot Arm.
We quantitatively compare our method to the commercial Mocha
workflow and RotoBrush on our Arm shot (Containing 30 frames,
the same shot used in Figure 14). The shaded regions around each
curve represents one standard deviation.

Generating New Splines Once we have trained the GP-LVM,
we can generate new splines from a low dimensional location x′ by
conditioning the distribution of Equation 16 on the training data. In
practical terms, this produces a simple matrix multiplication

y′ = F(x′) = κ(x′,X|α,β)
[
κ(X,X|α,β)

]−1Y (20)

to generate the new normalized spline y′.

C Additional Results
Figure 14 shows our additional visual comparison to the JumpCut,
RotoBrush and Mocha Tracker. The selected clip contains eight
adjacent frames (1080p), and represents the difficulties of non-rigid
deformation and illumination changes. Within this comparison, we
keyframe the first and the last frames across all the trials. For the tests
of JumpCut and RotoBrush, we show the curve propagation results
in forward and backward separately because the related software
does not support the propagation using two keyframes. Our method
outperforms the JumpCut and RotoBrush, and yields competitive
accuracy when compared to the proprietary Mocha Tracker (4.36
v.s. 6.42 average pixel RMS).
Figure 15 shows our additional quantitative comparison to the Mocha
Tracker and RotoBrush. An experienced artist performs the roto-
scoping on a difficult shot (the Arm, 30 frames) by using Mocha Pro
4.1.0 and AfterEffect CC’15 (RotoBrush) respectively. We shows the
points error against the time elapsed. The the commercial packages,
the artist is required to output the alpha masks at 5 minute intervals
after the first two keyframes. Note that this comparison does not
include JumpCut because the GUI is not publicly available.
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Figure 14: Qualitative comparisons of different rotoscoping methods. We propagate a curve from a reference frame to the other frames of
the arm shot. From Top to Bottom, The First group shows the JumpCut results by propagating the reference curve in forward (first row) and
backward (second row) directions respectively. The Second group illustrates the results of RotoBrush (Adobe AfterEffect CC 2015). The Third
group shows the results by using the Mocha Tracker (ver. 4.1.0) which takes into account two reference frames. The Fourth group gives the
results of our method which uses the manifold (trained by two reference keyframes) and the blender planar tracker. The Bottom row shows the
ground truth for each frame. Note that the cyan circles highlight details for the results.


