
30

LookOut! Interactive Camera Gimbal Controller for Filming Long Takes

MOHAMED SAYED, ROBERT CINCA, ENRICO COSTANZA, and GABRIEL BROSTOW, University College

London, United Kingdom

Fig. 1. LookOut can take over the task of controlling where the camera is pointing when a camera operator is overwhelmed with other duties on the

go, dynamically changing the camera’s behavior based on where actors are, how a scene progresses, and what the camera operator instructs it to do.

(b) The user-worn LookOut rig consists of a light backpack computer, a handheld motorized gimbal, dual cameras (normal and wide view), earphones, a

lapel microphone, and a joystick for initial setup. Before filming, the LookOut GUI (a) enables a user to pre-script where the camera should point and its

focal length. This involves creating camera behavior blocks that can be chained together to make scripts, callable during filming. A behavior can be as

simple as a pan or as complex as positioning multiple subjects in different parts of the frame, and they can be sequenced with scene-specific cues. On boot,

LookOut guides the operator, through text-to-speech, to enroll actor identities to its visual tracker, perform scene-specific initialization, and calibrate audio.

(c–f) Four frames from a LookOut-captured video, but with false-coloring to visualize which actor(s) LookOut is dynamically framing via its motorized

gimbal to satisfy the operator’s currently selected script. At the user’s instruction, LookOut frames (c) both dancers, then (d) orients the gimbal to center

on the male, then the female (e), and back to the male (f). The user receives audio feedback when switching between camera behaviors. Without a field

monitor, users can watch where they are going while trusting our controller to handle their dynamic requests.

The job of a camera operator is challenging, and potentially dangerous,
when filming long moving camera shots. Broadly, the operator must keep
the actors in frame while safely navigating around obstacles and while
fulfilling an artistic vision. We propose a unified hardware and software
system that distributes some of the camera operator’s burden, freeing the

Wenbin Li created the inspirational re-localizing gimbal-controlled camera under UK
EPSRC’s EP/K023578/1. Mohamed is funded by a Microsoft Research PhD Scholar-
ship. This work is supported by the UK EPSRC grant EP/R513143/1 for the UCL In-
teraction Centre (UCLIC). Our study was approved by the UCLIC Ethics Committee
(UCLIC/1617/017).
Authors’ addresses: M. Sayed and G. Brostow, University College London, 169 Euston
Road, London, United Kingdom, NW1 2AE; emails: mohamed.sayed.17@ucl.ac.uk,
g.brostow@cs.ucl.ac.uk; R. Cinca and E. Costanza, University College London, 66-
72 Gower Street, London, United Kingdom, WC1E 6EA; emails: {robert.cinca.14,
e.costanza}@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2022/03-ART30 $15.00
https://doi.org/10.1145/3506693

operator up to focus on safety and aesthetics during a take. Our real-time
system provides solo operators with end-to-end control so that they can
balance on-set responsiveness to action against planned storyboards and
framing while looking where they are going. By default, we film without a
field monitor.

Our LookOut system is built around a lightweight commodity cam-
era gimbal mechanism, with heavy modifications to the controller, which
would normally just provide active stabilization. Our control algorithm re-
acts to speech commands, video, and a premade script. Specifically, our
automatic monitoring of the live video feed saves the operator from dis-
tractions. In preproduction, an artist uses our graphical user interface (GUI)
to design a sequence of high-level camera “behaviors.” Those can be spe-
cific, based on a storyboard, or looser objectives, such as “frame both ac-
tors.” Then, during filming, a machine-readable script, exported from the
GUI, ties together with the sensor readings to drive the gimbal. To validate
our algorithm, we compared tracking strategies, interfaces, and hardware
protocols and collected impressions from (a) filmmakers who used all as-
pects of our system and (b) filmmakers who watched footage filmed using
LookOut.

CCS Concepts: • Computer systems organization→ Robotics;

Additional Key Words and Phrases: Cinematography, videography, video

editing, camera gimbal
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1 INTRODUCTION

Filming for journalism and movies is a creative and often collabo-
rative process in which the budget dictates whether the roles of di-
rector, director of photography (DP), and camera operators are ful-
filled by a team or rest on just one person’s shoulders. Ultimately,
the person holding the camera has the responsibility of delivering
both the content and style that was agreed to in advance while
safely adapting to dynamic changes on set.

After budget, time is the next biggest constraint. We consider
two types of filming scenarios: one in which a journalist or docu-
mentary maker must catch a one-off unrepeatable event and the
other in which actors and crew follow a storyboard with blocking,
repeating the performance until the director is satisfied with it. Our
system, called “LookOut,” is designed to help with both types of
filming if the aim is to capture a long take with a moving camera.

Long takes stand out as noteworthy and complex to choreo-
graph in big-budget films,1 though they are common for jour-
nalism, documentaries, and run-and-gun videos —the majority
of work done by video/cinematographers. Moving the camera
helps keep long takes interesting for the viewer [4, 31, 45].
Steadicams [5] and camera gimbals [55, 62] aid in filming these
scenes by keeping the camera steady. Steadicams isolate trans-
lational motion through springs and arms and camera gimbals
mainly isolate a camera from rotational movement of the carrier as-
sembly by suspending the camera on a pivoted support with often
motorized orthogonal axes. However, moving cameras and mov-
ing people stretch the attention of camera operators, who are try-
ing to simultaneously walk about and adequately frame their stars.
Usain Bolt was famously run over by a cameraman who suffered
from task overload while steering a Segway at the World Athletics
Championships in 2015.

Speaking informally with independent filmmakers, we found
that there was some interest in drone cinematography systems
such as those in [18, 50, 70], but a strong desire for three things:
(1) to have interactive control while filming, (2) a system that
tracks indoors and outdoors without special costumes, and (3) ide-
ally, to work with lightweight handheld hardware because drones
are prohibited in many populated areas and most countries require
a pilot’s license. This seeded our research process, which, with
feedback and validation from filmmakers, has led to our proposed
LookOut system (Figure 1).

The overall LookOut system serves as an interactive digital as-
sistant for filming long takes with a camera gimbal. LookOut con-
sists of software and three-dimensional (3D) printed hardware that
augments an existing lightweight motorized camera gimbal ($130),
with a video feed and rudimentary two-way speech interface con-
nected to a backpack computer. Without innovations, some of the
individual components existed in principle but would not integrate

1See the films 1917 [47] and Birdman [27], both filmed to look like one take, versus
Michael Bay’s average shot length of 3 seconds [51].

Fig. 2. A novice camera operator filming using the LookOut system:

(a) An existing active camera gimbal, designed to stabilize mobile-phone

filming. The mini-joystick is inactive by default, The orange 3D-printed

handle channels the cables and protects the USB connectors from being

bumped. (b) The backpack computer, connected to the gimbal by one USB

cable and connected to (d) with another. Not shown, the backpack also has

headphones and a lapel mic for two-way speech communication with the

operator. (c) The primary “star” camera, recording high-quality footage to

local memory. (d) The guide-camera, which has a wider field of view than

(c), and whose video is fed to the backpack computer for real-time analysis.

Star camera frame axes are represented with pitch (θ ), roll (ϕ), and yaw

(ψ ). The LookOut controller drives the orientation of the camera assembly.

(e) Gimbal handle enclosure to allow for wire pass-through and a comfort-

able grip. (f) Camera assembly engineered for balance and alignment of

camera optical axes.

into a usable or responsive video-making algorithm. Therefore, our
two main technical contributions are:

• A visual tracking system that detects and tracks actors ro-
bustly in real time for extended periods of time, relying
on a dynamic cost formulation for tracker/detection assign-
ment, strategies for creating and maintaining a robust and
space-efficient appearance history, and a recovery mechanism
for minimizing distractions when reacquiring actors after
occlusion.
• A combined controller that dynamically balances script-

induced constraints such as smoothness and intentional fram-
ing to reframe actors dynamically while still being responsive
to tracker outputs that have inherent noise and drop-outs.

Camera operators often wear many other hats, but from their
perspective, during the critical moments of filming, the LookOut
system responds well to voice commands and follows alternative
or sequential prespecified behaviors. It rotates and stabilizes the
camera within its joint limits to follow the actors and to compen-
sate for the operator’s trajectory through the scene. For our exper-
iments, operators did not see a monitor while filming. Thus, they
were free to look around and keep one hand free as they walked,
climbed, or cycled through different environments.

2 RELATED WORK

The graphics community has a long history of exploring camera
placement [7] and control systems [21], striving to be automatic
and cinematic. For “offline” scenery special effects, motion control
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camera systems have been used since the work of computer graph-
ics pioneer John Whitney in the 1950s [71]. While programmable
camera trajectories can help with stop-motion animation and with
layered compositing of scenery and special effects, they require hir-
ing specialized crew, are usually constrained to a short track, and
the systems ignore actors and other dynamic events. Therefore,
we focus this review on the context of our system: following and
framing of actors in video. This includes stabilizing gimbals, visual
active tracking, and efforts in drone cinematography.

2.1 Steadicam, Stabilizing Gimbals, and Active Tracking

Camera gimbals are essential for smooth video capture, especially
when the whole assembly is held by a walking camera operator.

Garrett Brown invented the Steadicam [5] in 1975. The
Steadicam allows a camera operator to physically move the cam-
era and simultaneously capture smooth footage. It has been fa-
mously used in many Hollywood film productions, including
Rocky (1976) [2], Goodfellas (1990) [56], and Indiana Jones and the

Temple of Doom (1984) [59]. Steadicams provide an extra layer of
isolation from the camera operator compared with gimbals in that
they also dampen camera translation. Some are motorized to pro-
vide active stabilization and manual motorized control over the
direction of the camera. Although the camera operator no longer
has to worry about keeping the camera steady, the operator must
still point the camera while moving, either electronically through
a joystick or manually by rotating the camera assembly.

BaseCam Electronics [14] developed different hardware and
software components for the construction of stabilizing gimbals.
Their firmware offers control and flexibility over every stabiliza-
tion parameter. We build on top of their BaseCam Handy gimbal,
which offers 3-axis control over camera orientation. Communica-
tion to the gimbal is achieved through a serial API that allows for
online control and settings changes on the fly.

Many early active tracking systems focus on surveillance appli-
cations. The pan-tilt camera control by Daniilidis et al. [9] orients
a camera to focus on motion in a static scene. Dinh et al. [11] and
Funahasahi et al. [16] propose multi-camera or multi-focal length
camera systems for identifying pedestrians through facial recogni-
tion. These systems are among the many that actively controlled
pan, tilt, and zoom.

Closest to our own hardware is the DJI Osmo Mobile [12]. It
is a commercial real-time, handheld active tracker. It uses a mo-
torized gimbal and inertial measurement units (IMUs) to control
a smartphone camera’s orientation. The gimbal enables the user
to create stabilized camera footage and select a single object to ac-
tively track. A smartphone is used as the camera and processing
unit. The tracking algorithm is not made public. Unlike our system,
users have no control over framing and complex scripting, and no
ability to track multiple targets.

2.2 Tracking

Generally, the ability of a tracker can be measured based on some
high-level performance criteria. Among them are speed; accuracy,
including robustness to ID switching — confusing another object
with the target — or drift; number of trackable objects (usually one
vs. many); robustness to appearance changes; and the ability to be

run online. Most trackers in the literature are designed to some,
but not all, of these. Our application requires robust tracking of
a handful of targets for long durations (>20 minutes). Robustness
to ID switches and target reacquiring after occlusion, especially
in busy and cluttered environments, are crucial to our use case
since a target swap during filming would very likely ruin a take
and cause delays. We focus almost entirely on trackers that can
approach real-time speeds.

The VOT challenges [35–38] cater to single-target tracking of
any class and include benchmarks for RGBD and thermal track-
ers. The VOT Short-Term Challenge allows tracks to be reset, with
a penalty and a timeout of five frames, to make use of the entire
dataset. Trackers in the main VOT challenge are not required to
deal with longer-term occlusion and confidence reporting. In our
use case, actors often appear and disappear as filming progresses.
While the VOT Long-Term Challenge evaluates trackers with met-
rics that put a greater emphasis on longer-term tracking (the aver-
age video is 2 min 04 s long and contains 10 occlusions lasting 52
frames [38]). Other tracking datasets also contain long videos with
occlusion [49, 64]. Unfortunately, benchmarks on these datasets
are either not maintained or trackers submitted are not required to
share implementation details. These benchmarks do not run track-
ers in a multiple-object regime.

A family of single-object trackers are built on top of relatively
lightweight Siamese network architectures [3, 63, 66, 76]. Most no-
tably, SiamMask [66] achieves state-of-the-art performance on the
VOT2018 challenge at 50 Hz. DaSiamRPN [76] includes a “distrac-
tor aware”module for reducing track loss errors after occlusion; it
achieves first place on the VOT2018 real-time challenge and sec-
ond place on the VOT2018 long-term tracking challenge [37, 44]
at 110 Hz. We experiment with both trackers and show how they
are both prone to imposters of the same object type in long takes
and cluttered environments.

The MOT challenge [48] provides performance metrics on track-
ers for multiple people in crowded scenes. The average shot length
in MOT is ~31 seconds with most targets exhibiting shorter life
spans. While MOT includes metrics that measure ID swaps, re-
sumed tracking with a new ID is still rewarded.

Among the lightweight high-scoring MOT multi-person track-
ers, DeepSORT [67] and MOTDT [43] stand out. Both incorporate
a tracking-by-detection paradigm and use a combination of IOU
and appearance costs via ReID networks for assignment. Assum-
ing that detections are precomputed in advance, they could theo-
retically operate at 120 Hz and 60 Hz, respectively. In Section 6,
we compare against these trackers and show that while they are
capable of tracking in dense scenes with short-lived tracks, as in
MOT, they are not robust to ID switches when tracking people in
frame for longer videos, making them inadequate for our use case.

While these trackers offer good performance across a wide
range of metrics and for different classes of objects, no one tracker
satisfies all requirements of our use case, especially for people
tracking.

2.3 Automatic Drone Cinematography

Though drones are contentious, with safety restrictions in
many countries, we share many objectives with drone-based
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cinematography. Skydio [58] and DJI [13] provide multiple com-
mercial drones with autonomous flying, self-localization, and sin-
gle actor tracking capabilities.

Drone cinematography is an active area of research. Ideas ex-
plored include actor pose–driven drone flying [25], controlling
subject framing autonomously [29, 50], constructing drone paths
around user-defined way-points [70], learning or mimicking shot
style and kinematics from expert drone pilots [1, 26], and using
the Prose Storyboard Language (PSL) [54] for actor framing and
plotting drone paths [18]. Although these methods either use lim-
ited UIs and/or non-visual means of actor tracking (GPS and in-
frared markers), they showed promise for the concept of scripted
and actor-driven camera control.

While we share the excitement around drone-based filming,
drones are not always the correct, safe, or perhaps even legal tool
for the task. Most actor-driven shots take place in close quarters,
with the camera closely following actors in the middle of the ac-
tion. Further, while dubbed audio may be used in scenes, the noise
they produce will ruin on-set audio.

2.4 Post-Filming Video Directing and Editing

While this work proposes getting the right framing during filming,
other work focuses on either fixing framing in post or automating
some or all of the editing process [10].

Many methods correct erratic and shaky camera movement in
video [22, 33, 41, 46]. Grundmann et al. [22] formulate L1-optimal
camera paths in handheld footage while incorporating framing
constraints, notably, a constraint on incorporating important fea-
tures via a relevant saliency map, for example, output from a face
detector.

Gaddam et al. [17] propose a system for both real-time and
offline user-controlled framing in high-resolution video. Su and
Grauman [60] improve the state-of-the-art for automated 360◦

to narrow field of view video editing by allowing for varied
style, enabling zoom, and improving computational efficiency.
Gandhi et al. [19] propose a system for automatically extracting
multiple clips from a single camera angle to assist editing.

Leake et al. [40] formulate a system for automatically editing
together multiple takes of a dialogue-driven scene with guidance
on style taken as input from the user [10]. Wright et al. [68] de-
scribe and evaluate Ed, a system for automated camera and fram-
ing selection for live events. These methods are complementary to
ours.

3 LOOKOUT SYSTEM OVERVIEW

At a very high level, the proposed LookOut system lets a user spec-
ify what the user wants to track and then aims the camera gimbal
at that target during filming. Achieving that aim required many
iterations of hardware, software and user interfaces, especially (1)
innovations in long-term visual tracking and (2) a novel control
system. Here, we outline the components of the system and how
they help the operator to design and safely film the long takes they
want.

A solo camera operator, without specialized programming skills,
uses our graphical user interface (GUI) for offline pre-production,
and our rig for live filming. We consider post-production only as

part of future work. Interestingly, Leake et al. [40], Wang et al. [65],
and Zhang et al. [73] built interfaces that use learning to assist
precisely with film editing of existing clips. Instead, through our
GUI, the user defines one’s intentions up front — somewhat like
telling an assistant what to expect. Those intentions are saved into
scripts that are later parsed by the LookOut control system during
filming. On set, the camera operator wears a backpack computer
(Figure 2) as the control center and sensor hub. The user also holds
the camera gimbal in one hand and has dialog with the LookOut
controller by wearing a microphone and headphone.

3.1 High-Level Components

We give a brief overview of these components here before provid-
ing their specifics in Section 4, Section 5, and the supplemental
material.

GUI: Before filming takes place, the camera operator uses Look-
Out’s GUI to “tell” the camera gimbal how to behave and what
to expect. The behaviors are chained together into a relative time-
line. Instead of absolute times, user-specified cues will conclude
and then trigger each subsequent behavior in turn. Through the
script file saved by the GUI, non-programmer users instruct the
LookOut control system with what to look for in the audio and
video sensor inputs and how to react. See the supplemental ma-
terials, in whic we show the Blockly-based LookOut GUI for de-
signing long takes. There, we explain how non-programmer users
build script files by assembling chains of behaviors. A resulting
script file encapsulates how one or more actors (and even non-
actors) should be framed while filming. The script file switches
between behaviors when triggered by user-controlled cues that
LookOut checks for continuously: Speech cues, Elapsed Time, Ac-
tor Appearance/Disappearance, Actor in Landing Zone, and Rel-
ative Actor Size. We are proud of the GUI for being easy to
learn and for matching many of the wishes voiced by consulted
film-makers.

System Startup and Setup: When the LookOut hardware is
first switched on, the user selects which scripts to load into the sys-
tem. LookOut then parses these scripts and asks the user, through
guided audio feedback, to enroll actors for tracking. The user adds
an actor by pointing the camera roughly in the actor’s general di-
rection and pressing a button on a small joystick. LookOut guides
the user for each additional actor. The system then prompts the
user to utter each script-relevant speech trigger. This ensures that
all speech triggers are registered by LookOut using the user’s cur-
rent hardware audio configuration. LookOut informs the user that
the setup is complete and remains in Manual Mode until the user
requests Automatic Mode. Every mode switch and behavior trigger
is met with audio feedback.

Controller: The controller reconciles the input script(s) with in-
coming sensor data to dynamically drive the gimbal motors. When
a script sets out the camera behaviors, the controller listens for the
relevant audio cues and analyzes the video feed to monitor spatial
relationships between enrolled actors. It then dynamically drives
the gimbal to achieve the desired framing and smoothness. Finally,
it gives audio feedback to the user so that the user knows that the
LookOut system is correctly following the script and the current
actions. The control loop is described visually in Figure 3.
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Visual Tracking: Dynamic framing of one or more actors re-
quires our system to follow along, monitoring where people are
on-screen, even when they are briefly occluded or on the edge of
the field of view (FoV). For these aims, we needed a visual tracker
that can detect people and distinguish between them for long peri-
ods of time despite imposter objects, for example, people or things
that could resemble the main actor(s). Our tracker balances the
need for accuracy against the need to feed low-latency tracks to
the controller.

3.2 Hardware

Here, we describe the hardware and low-level software on which
LookOut is built. See Figure 2 for a close-up of hardware.

Backpack: Our system requires low-latency feedback control in
the wild. We use a VR backpack computer with a Quadcore Intel
i7 7820HK CPU@2.90 GHz and a mobile NVIDIA GTX 1070 GPU.
The backpack can operate for 1.5 to 2 hours, allowing for very long
shots and multiple takes, and is light at 3.6 kg.

Stabilizing Gimbal: We use the BaseCam Handy gimbal to
carry the camera assembly. The gimbal is programmable through a
serial API and allows high-speed, low-latency control and teleme-
try data transfer up to 80 Hz. The gimbal has an Inertial Measure-
ment Unit (IMU) on the camera frame assembly and an encoder for
each axis for tight closed-loop feedback control. We have exclusive
control over velocities on yaw (ψ ), pitch (θ ), and roll (ϕ) on the cam-
era frame assembly regardless of the orientation of the handle. We
disable any internal low-pass filters on velocity to ensure control-
lability. We tune the gimbal’s internal proportional integral deriv-
ative (PID) [32] loop for the tightest possible axis velocity control
while ensuring loop stability, given our camera array.

Camera: We use two cameras in our system. One serves as a
guide camera for visual tracking over a 90◦ field of view. It operates
at 60 Hz and at a resolution of 1280 × 720. We decouple roles a cam-
era must perform by using a separate camera for capturing high-
quality footage, which we call a star camera. This configuration
was preferred by filmmakers in our initial scoping. It allows for
cinematic freedom over camera parameters used for filming, with-
out sacrificing preferred parameters and hurting the performance
of the visual tracking pipeline. We design and 3D print a carrier
assembly for the cameras, shown in Figure 2. It maximizes the bal-
ance on all gimbal axes while minimizing the distance between the
optical centers of both cameras within the gimbal’s confined space.

Remote Screen: We use a remote HDMI transmitter and screen
when turning the system on. Once the system is set up, the screen
is put away.

Audio: The user wears a lapel mic and earphones to speak
commands to the system during filming and to receive feedback
throughout actor enrollment and filming. We use an online wake
word detection framework, Porcupine [52], for recognizing speech
commands.

4 TRACKER

To achieve LookOut’s aim of framing actors, the system needs
to know their locations in screen space. The tracking component
must work reliably for filming impromptu run-and-gun situations.
Attaching real tags to actors, such as in [18, 50], is often imprac-

tical. To this end, the tracker must be completely visual in nature.
The requirements of the tracker are that it must:

(1) be capable of locating multiple targets of interest simultane-
ously, with a focus on actors;

(2) reacquire actors when they appear back in frame, while being
robust to ID switches; and

(3) maintain a high online refresh rate (>30 Hz) and low latency
to ensure that fast actor movements are captured and acted
on by the control feedback loop discussed in Section 5.

We cover the current state-of-the-art in Section 2.2. Broadly, the
trackers that are fast enough (>20 Hz) fall into two categories: (1)
single-object trackers aimed at the VOT [6] and OTB [69] chal-
lenges and (2) multi-target trackers from the MOT [48] challenge.
We compare against the best trackers from these challenges in
Section 6.1. Notably, while single-object trackers such as DaSi-
amRPN [76] and SiamMask [66] perform well when keeping track
of an object in frame, they are prone to tracking imposters when an
object is occluded and reappears in frame, not satisfying Require-
ment (2). To satisfy Requirement (1), a different instance of each
tracker would need to run separately for each actor; this compro-
mises Requirement (3) since the runtime now scales linearly with
the number of actors.

For trackers competing in the MOT [48], almost all trackers
use tracking by detection. These trackers suffer a relatively small
penalty for each additional target but require a real-time detector
with a good compromise of accuracy and speed.2 However, the
MOT benchmark is run on scenes whose mean length is only ∼31
seconds, where targets only occasionally change view throughout
their short life and rarely reappear after long-term occlusion, with
a small penalty given for ID switching. We take inspiration from
high-scoring trackers in the MOT benchmark, DeepSORT [67] and
MOTDT [43], but add three contributions:

• a reworked cost structure for detection/track assignment,
with a concentration on tracking a handful of targets robustly;
• a recovery phase and mechanism; and
• a set of lightweight, long-term appearance-encoding history-

management strategies.

Our tracker relies on an appearance-encoding history for dif-
ferentiating actors and other people during filming. A reliable
per-actor appearance-encoding gallery is important for tracking
and recovery. All three components, explained below and in pseu-
docode in the Supplementary Material, focus on maintaining cor-
rect IDs for each actor, especially after occlusion.

Cost Formulation and Data Association: Our tracker min-
imizes the the cost of assigning targets T = t1, . . . , ti , including
appearance and bounding box information, to a set of detections
in the current frame D = d1, . . . ,dj . Taking inspiration from Deep-

SORT [67], we combine cIOU
i j , the IOU bounding box cost [28, 48],

with cf
i j , the cosine distance on appearance features, derived from

the Siamese network in [75]. We do not use a Kalman filter state-
based cost, as detections from our choice of lightweight detector,
tiny-YOLOv3, are very noisy spatially over time.

2MOT trackers take detection bounding boxes for granted in the benchmark.
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Fig. 3. High-level control loop view of how LookOut fulfills subject framing. On top, user inputs come in the form of the GUI during pre-production and

through the use of speech commands on set. At the bottom, the tracker converts guide camera footage into raw tracks, PT. All of these inputs enter the main

controller (highlighted in blue and explained in Section 5), whose job is to provide an error signal that will drive the gimbal through the PID [32] controller.

By modulating process variances, h, the controller balances between responsiveness and smoothness for one or more actors. h is among the outputs from

behavior logic, which had access to augmented track points from the last timestep (not pictured) and current target points, PT. h helps compute the

augmented points, PA, which go into the weighted Procrustes module (weighting explained in Section 5.2). The other main input to the Procrustes module

is the required locations for each actor, PR . Finally, the weighted difference between required locations and augmented locations drives the gimbal update.

Not seen here is a velocity fading module that fades between different velocities at the transition from one type of behavior to another.

IOU costs are useful when a target is in isolation, but useless
when overlaps occur or when coming out of a long occlusion. Ap-
pearance costs, on the other hand, are crucial for re-identifying
the target after long occlusion, but a collection of appearance fea-
tures, capturing the appearance of the target under different light-
ing and self-occlusion, must be accumulated before they can be
relied on. To this end, we formulate a dynamic cost structure spe-
cific to each target that emphasizes robustness by relying on IOU
when no more than one detection competes for the same target
and the appearance cost when a target is crowded. Nominally,
the cost for associating a particular target an detection, c (ti ,dj ),
is

c (ti ,dj ) =
⎧⎪⎨
⎪
⎩

c IOU
i j if c IOU

ik
> τ overlap

cfeature
i j + c IOU

i j otherwise .
(1)

where k � jτ overlap is the cost of assigning the track i to another
detection k and is set to a high strict value to prevent ID switches
when a target is occluded by other people (other ks). To further
reduce target switches, a track/detection pair is deemed incompat-
ible if either the IOU cost or the appearance cost exceed defined
low maximums.

We assign cf
i j the cost of the lowest cost match between a tar-

get’s appearance encodings and that of a detection dj . Although

we take measures to exclude rogue imposter encodings, a single
matched feature encoding can produce an incorrect match. To miti-
gate this, we take an average of theN lowest appearance costs from
the target’s history and we disallow a match between this combi-
nation of track and detection if it exceeds a predefined maximum.

Finally, all costs are passed along to a linear assignment step [39],
where globally optimal target and detection assignments are
found.

Recovery: Actors of interest will go into planned or unplanned
short- and long-term occlusion throughout filming. During oc-
clusion, the tracker must not confuse imposters with actors, and
should then recover these actors when out of occlusion. We use ap-
pearance costs, cf

i j , exclusively for this step. However, appearance

encodings are temporally noisy; thus, an imposter detection might
present a noisy appearance encoding in one frame that matches to
a lost target. To prevent these types of false matches, we define a
recovery phase that is begun when a detection is matched to a lost
target. For a target to come out of recovery, it must be matched
to a detection for R sequential timesteps, where R is decided dy-
namically. This mechanism sacrifices a few frames of tracking for
recovery in the short term, but greatly improves the tracker’s long-
term tracking ability and its resistance to ID switching. We test our
tracker without a recovery step in Table 2.
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Feature History Management: In dense scenes and in a tar-
get’s recovery phase, the tracker relies solely on each target’s ap-
pearance encoding gallery, Ri = {r1, . . . , rL } for data association.
Ideally, an infinitely sized history would allow for the most accu-
rate representation of the target’s appearance. However, encoding
comparisons for calculating appearance costs would get expensive
with longer target life cycles —10 minutes at 30 Hz yields 18,000
appearance encodings. A common solution [43, 67] is to restrict
the gallery to the last L encodings. This strategy works well for
short track life in short sequences, as in the MOT challenge. How-
ever, this is less successful for longer sequences, in which a target
may reappear either with a different lighting or pose than when
the target went into occlusion. Table 2 shows the performance of
a tracker with a naïve last-Lk encodings history. We address the
rapid increase in the gallery’s size by selectively adding encodings
to the appearance gallery on every timestep. An encoding is added
only if it is sufficiently distant, via the cosine distance, from all
other encodings in the gallery. This slows down the growth of the
gallery by an order of magnitude and prioritizes space and time on
informative encodings.

When a target is crowded by many detections, encodings pro-
duced with occluded bounding boxes might later allow an impos-
tor to match the target incorrectly. To address this, encodings are
added exclusively in normal tracking —when only one detection
competes spatially for the current target. In Table 2, a tracker with-
out this check is referred to as Faulty Encodings.

Although these steps help reduce the expansion of the gallery’s
size and maintain its integrity, they only delay the pruning prob-
lem when the gallery is full. Informed techniques that cluster en-
codings to select the most informative encodings are iterative and
time-consuming in this high-dimensional space — k-means con-
sumes 7 ms for each target. Alternatively, a simple and effective
solution is to randomly sample Lk from the gallery when it is 10%
larger than Lk . This has the effect of maintaining new appearances
of a target while keeping a fading memory of older appearances for
longer since, with every sampling step, encodings of an older age
stamp are less likely to be propagated forward.

Speed: As mentioned previously, MOT provides detection for
granted and trackers do not report detection time. A survey of the
detection field shows that single-shot object detectors [42, 53] are
best suited for their trade-off of speed and performance. We use
people, cars, and bicycle detections from tiny-YOLOv3 [53] in our
system. We tune the Kalman Filters used for tracking updates to re-
duce temporally noisy detections from tiny-YOLOv3 before being
passed to any control loops down the pipeline.

Subject Enrollment: Our tracker requires one frame to enroll
an actor and can track subjects immediately. An extra step can
be taken to build up an initial appearance history by having the
subject turn around and ideally walk once through the scene.

As shown in the Supplementary Videos, we also experimented
with DaSiamRPN [76], which allows enrollment of novel objects,
such as a shop window and a garden gnome.

5 CONTROL SYSTEM FOR FRAMING ACTORS

We drive the camera orientation to re-frame actors dynamically
over time. The controller reconciles live tracker data with the

user’s instructions and then drives motors on the gimbal to ad-
just the camera assembly’s orientation to achieve the user’s desired
framing of one or more actors. The interface for user instructions is
discussed in the supplementary materials, and actor location track-
ing is discussed in Section 4.

The visual servoing community has made tremendous progress
in constructing methods for moving cameras and robotic arms to
desired positions in space and/or orienting them based on some ex-
ternal visual signal [34]. The bulk of visual servoing use-cases are
in robot end effector control in manufacturing. Usually, these meth-
ods involve the solution of a Jacobian matrix [8, 15] that encodes
tasks and joint movement constraints. While some work explores
modulating the variance of the mean position of all visual points
of interest in image space [20, 72], none has provided a transparent
formulation for controlling per target variance nor does one pro-
vide a framework for gradual change between different tasks and
constraints. We borrow themes from the visual servoing literature
while constructing a task-specific control scheme.

Appealing camera positioning and orientation is essential for
effective video game design. As such, the video gaming industry
has generated methods and implementation tricks for employing
dynamic cameras that follow in-game action on-the-fly [23]. While
these methods assume that targets are known with certainty and
that control over camera properties is instantaneous, we take hints
from the community when designing our own control scheme and
incorporate strategies to both mitigate and cope with real-world
noise.

At a high level, the controller is a closed-loop feedback system
with PID [32] controllers that minimize an error signal, e (t ), by
modifying the camera frame’s yaw and pitch over time. e (t ) is an
abstraction of the error between real-time dynamic actor locations
and desired user framing encapsulated in the script. If we sim-
plify camera space conversions, ignore noise, and assume only a
single tracked target, then e (t ) is just the screen space difference
between the actor’s tracker location and the user’s screen space
requirement for actor framing, with both x and y components. Er-
rors in x and y are corrected by changing the camera frame’s yaw
(ψ̇ ) and pitch (θ̇ ), respectively. The corrections are handled by PID
controllers; thus,

ψ̇ = PID(ex (t )) and θ̇ = PID(ey (t )). (2)

We tune our PID controllers using a relaxed version of the
Ziegler-Nichols procedure [77] to achieve the tightest response
possible while minimizing overshoot, given delay and processing
constraints. Note that these are camera frame radial velocities and
not direct motor torque commands. The underlying gimbal cam-
era assembly radial velocity stabilization is tuned in the gimbal’s
firmware and is not discussed here.

This abstracted version of e(t) is suitable for a single actor and
will produce erratic camera motion since raw tracker locations are
noisy either due to tracker inaccuracy or due to subtle actor move-
ments. This is fine if the preferred style is very erratic, unnerving
camera motion with a random component due to noise, but not
for any other desired style. Tuning the PID controllers to be lazy
would ignore noise and allow for a lazy camera but would erode
control over all actor-driven camera behavior and remove respon-
siveness when responsive corrections are required. Other design
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Fig. 4. Yaw (top) and pitch (bottom) camera frame radial velocities for

both our full system and ablated control throughout the control ablation

running scene. The standard controller (ablated system) does not ignore

tracker noise and translates changes in perceived actor location from the

tracker directly to an error in the PID controller. This leads to massive

overcorrections and an uncontrollably erratic camera. Instead, our full con-

troller can handle tracker noise and camera translation by using modifi-

able leniency (Section 5.1) on raw tracker locations and applying control

weight adjustment (Section 5.2). Note that these are not gimbal motor ve-

locities. Rather, these are target radial velocities for the camera frame to

achieve. Raw gimbal axes velocities and torque are a function of required

camera frame velocities and external forces acting on the gimbal assembly.

considerations include handling behavior transitions and tracker
dropouts, where potential camera jerks are likely and a single one
would ruin a take. The controller must handle a variety of filming
scenarios and behaviors —from single actor to multi-actor, from
action scenes to calmer, slower-paced scenes, and the transitions
between them. Therefore, we design the controller to pursue the
following design objectives.

(1) Achieve desired user framing: On every loop, the system
should minimize the difference in required actor framing ver-
sus actual actor framing. Logical compromises should occur
when framing multiple actors at once.

(2) Move the camera only if motivated: The user can provide
an ellipse for each actor in each behavior, indicating an area
around the actor. In this area, their movements do not result in
camera frame reorientation. The controller should also ignore
noise from raw tracker estimates so that the camera does not
oscillate and produce unpleasant motion. This is discussed in
Section 5.1.

(3) Enable smooth transitions: As behaviors change, different
actors come in and out of scene. The transitions between dif-
ferent actors must be smooth. This is discussed in Section 5.2.

The e (t ) signal driving the PID controller is computed based
on these objectives. Specifically, e (t ) comes from a weighted Pro-
crustes module, which we simplified: it aligns the current 2D actor
location(s) with the location(s) required by the user, subject to the
available degrees of freedom. We found that in-plane rotation for
framing was not helpful. Therefore, in all of our experiments, we
used a Procrustes model that simply finds the translation vector

Tc as the weighted difference of the average actual locations and
the average required location; Tc acts as our error vector e (t ). We
also extend this to account for star camera zoom by scaling the
input points appropriately. To address Objective (2), we add “Le-
niency,” in which instead of passing raw tracker components to
compute Tc, we instead produce dynamically decoupled and fil-
tered Augmented locations in Section 5.1. To address Objective (3),
we modify the influence each actor has in current framing given
transitions and tracker confidence and introduce filtering on re-
quired script behavior in Section 5.2. Figure 3 provides a high level
overview of the control system’s components.

5.1 User-Defined Motivated Camera Movement

Minimizing the difference between actor locations given by the
tracker, PT = {pT

1 , . . . , p
T
n }, and required actor locations, PR =

{pR
1 , . . . , p

R
n }, using Procrustes satisfies Objective (1). However, this

would not filter noise, either from the tracker or abrupt camera
translation, and would not allow for selectively ignoring small ac-
tor movement. Instead, to satisfy Objective (2), we define tracked-

smoothed-augmented points (“Augmented”) PA that are smoothed
versions of PT and use those to compute Tc. The obvious means of
making augmented versions PA is via Kalman filtering. Thus,

pA
i = KalmanFilter

(
pT

i , hi

)
, (3)

where hi is a process variance. A high hi means that an augmented
point follows its tracked point quickly, allowing for an immediate
change in the error term for that actor and an immediate correction
signal from Procrustes resulting in a very responsive camera-to-
actor movement. A small hi allows for the opposite: each pA

i
lazily

follows its track point pT
i

, resulting in a less immediate corrective
signal and less eager camera panning.

However, fixing hi limits user control. Ideally, there should be
definable areas of forgiveness around an actor where small move-
ments are ignored. Setting a small hi allows this, but this would
ignore actor movements outside of this area when they do matter.
Instead, we modulate each hi based on dLE

i
, the current discrep-

ancy between a tracked point pT and its augmented point pA from
the previous timestep. We make hi proportional to dLE

i
so that with

a small hi, the Kalman filter will ignore new updates given by pT
i

and instead choose to maintain the older location of pA
i

. As a point

pT
i

moves too far from its pA
i

, the distance, dLE
i

, ramps up hi and
the Kalman filter is more sensitive to new incoming updates via
pT

i
. Thus, pA

i
follows pT

i
more closely.

The relationship between dLE
i

and hi is user definable and based
on a family of exponential functions. Here, we define a set of aes-
thetic parameters for each axis.

• Zero Error Lift, v : This forces a non-zero value when dLE
i

is
at zero. The result of a highv is an immediate responsive pan
from the camera when the actor moves small distances from
rest.
• Agnostic Gap, a: This defines how much distance the actor

has to travel before the camera pans.
• Curve Profile, q: This defines the ramp up at the edge of the

allowed area of leniency and determines how sharply the cam-
era will pan when an actor begins to leave that leniency area.
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We also set a hard limit on h via η. This cap limits the impact
from temporal instabilities in the tracker and was experimentally
set to 0.01 for vertical motion and 0.05 on horizontal motion in all
experiments. We include a qualitative experiment for demonstrat-
ing these smoothing functions and raw tracker values in the sup-
plemental videos. For each actor, each component of h = (hx ,hy )
is computed as:

hx = ηx clamp(0, 1, eqx (d LE
x −ax ) +vx ) and

hy = ηy clamp(0, 1, eqy (d LE
y −ay )

+vy ).

These equations are not obvious, but the three input parameters
have interpretable connections to the radii (rx , ry ) of each ellipse
drawn by the user in the GUI. The functions relating radii r to
each of these parameters are given in the Supplementary Material.
In brief and for a single axis, for a large r , v is reduced such that
almost no movement occurs at zero error, a is made to satisfy the
distance defined by r , and q is set so that the transition is smooth.
Conversely, for a small r ,v is kept high for immediate reaction, a is
set so that the point at which the curve increases happens earlier,
and q is set so that the curve is sharp. See Figure 6 for different
curves corresponding to different user input radii. We include an
example of multiple-actor leniency in the supplemental video.

Note that the naïve solution of simply weighting the error asso-
ciated with the i-th actor to zero when the actor is in some allowed
radius will not achieve multi-actor leniency. Most situations result
in a suboptimal optimization in which required actor locations are
not fulfilled perfectly due to physical limitations. A zero weight for
an actor would result in a new optimization and, counterintuitively,
produce camera motion when none was required. See Figure 5 for
an illustration of this.

5.2 Actor Transitions and Path Behavior

To allow for smooth transitions between subjects, satisfying Ob-
jective (3), each actor is assigned a weight, wi , that modifies the
actor’s error term in the Procrustes optimization. When actors ap-
pear in frame and are part of the current behavior, their weight
is increased progressively. Their weight is decreased when they ei-
ther disappear from frame, because of occlusion or tracking failure,
or are no longer included in the behavior.

For each actor, we also apply Kalman filters on user-selected re-
quired points as they transition between different behaviors so that
no discontinuities occur. Separately, a behavior can be intention-
ally shaky to give the viewer a hand-held impression. To achieve
shakiness or intentional banking behavior (like an airplane chang-
ing course), the controller reads the gimbal IMU accelerations on
the camera’s horizontal axis, applies smoothing, and actuates the
roll axis. See the supplemental video for an example of a path
behavior.

5.3 Focal Length Control

We make star camera focal length control available to the user in a
few ways. Standard operation modifies the set of required points,
PR, to match star camera framing at the current zoom level. We do
this by applying a scaling matrix with knowledge of the camera
intrinsics at each zoom interval. The new required points used as

Fig. 5. (a), (b), and (c) show an example in which the user specifies that

both actors should be framed in the center given by required locations pR
1

and pR
2 . However, the actors’ relative locations at pT

1 and pT
2 make it impos-

sible for that requirement to be fulfilled. As such, the best framing possible

at steady state is where both are equidistant from the center. In (a), no le-

niency is defined; thus, a movement by either pT
1 or pT

2 will need a new

optimization and the camera pans. In (b) and (c), leniency is required on

actor 2, given by the red ellipse defined by the user — that is, if the actor at

pT
2 moves within the ellipse, the camera should not respond. In (b), a naïve

solution to achieve leniency is to attenuate the error term dE
2 when the tar-

get pT
2 is close to the point of the optimization at steady state (where pT

2

sits). However, since this is a less than ideal framing with both required

points at the center, a new optimization will be found that improves dE
1

and the camera pans, disregarding leniency. Instead, in (c), we formulate a

new augmented point pA
2 that is output from a Kalman filter on pT

2 whose

process variance is modulated by the distance dLE
2 with regard to the el-

lipse. The actor and ellipse at pT
2 can move around the augmented point,

pA
2 , and as long as the augmented point is in the ellipse, the process vari-

ance h2 remains low and the augmented point at pA
2 does not move with

pT
2 . The error term dE

2 remains low since pA
2 remains stationary although

the actor at pT
2 has moved; thus, the camera does not pan to compensate.

When the actor leaves this ellipse, h2 is ramped up, pA
2 moves to follow

pT
2 , the error term dE

2 changes, a new optimized framing is found, and the

camera pans.

input to the optimization are now

PR ′ = Sz PR .

This keeps star camera framing consistent with what the user
has defined on the main framing panel regardless of zoom level.

The simplest form is where the user can specify a zoom level
for a script and use required points, PR, placed in guide camera
image space as is. This gives the user creative freedom over actor
framing at the edge and beyond of the star camera’s frame. In this
case, the points PR are unchanged. Other settings allow for the
zoom to automatically change depending on the size of the actor
in frame.

6 RESULTS AND EVALUATION

The LookOut system has been used to film over 12 hours of footage.
To measure its strengths and find its weaknesses, we split up vali-
dation into five components:
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Fig. 6. Curve profiles for different user-prescribed leniency radii. These

radii represent areas around the actor where camera panning is attenu-

ated if the actor moves in that area. The y-axis is applied to η to produce

each Kalman filter’s process variance, h. The x-axis is the difference, dLE
i

,

between the augmented version of the actor’s location from the previous

timestep, pA
i

, and the raw tracker location, pT
i

, and is normalized relative

to screen space size. A smaller ellipse radius limits the area where the actor

can move without a camera pan, as the process variance ramps up imme-

diately. A larger ellipse allows for more actor movement before the camera

starts panning.

Fig. 7. Sample frames from annotated videos used for benchmarks. Top:

Market, a 3 min 20 s scene of the actor in the beige coat walking through a

crowded market. There are many occlusions in this scene, including where

the target appears in frame with a different appearance than when the

target went into occlusion. Bottom: TwoPeople, a 10 min 30 s scene of two

actors on a walk through a campus and a park. Both actors wear similar-

looking clothes, occlude one another, disappear from the frame entirely,

are seen at different scales, and walk at various distances away from the

camera.

(1) Tracker performance
(2) Controller Evaluation
(3) Hands-on evaluation by filmmakers
(4) Discussion of LookOut footage with senior filmmakers
(5) Qualitative showcase of LookOut in different scenarios

For Validation Components (1) and (2), we also compare perfor-
mance against the DJI Osmo Mobile 3 in the supplemental material.
Note that illustrated footage in the supplemental website is slowed
down to make ingesting telemetry data easier.

6.1 Tracker

We test our tracker’s performance on the VOT Long-Term Chal-
lenge [38] and on two long manually annotated videos that better
represent our film-production use case. Market (one-actor scene
at 3 min 20 s with annotations every frame) and TwoPeople (two-
actor scene at 10 min 30 s with annotations every 5 frames) are
challenging scenes with representative clutter, many occlusions

by distractors, variable appearance before and after occlusion, and
lighting changes (Figure 7). Crucially, the subjects’ appearance
changes to something not seen before when emerging after an oc-
clusion. While our tracker and others can sometimes be shown
the subject from all angles to build a representative history, this
test also checks for pickup-and-go filming performance. Thus, no
such five-second grace training period is given. We ultimately
advocate our tracker for the tracking of people in our use case.
However, we include all videos from the VOT challenge in the
comparison.

We describe in detail how these videos are annotated and the
exact details of the associated metrics in the supplementary mate-
rial. Broadly, a tracker is awarded a true-positive (TP ) point for a
frame if it either correctly predicts the bounding box of the actor
or correctly predicts that the actor is occluded. If a tracker outputs
an incorrect bounding box, regardless of whether or not the actor
is occluded, it is given a false-positive point (FP ) for that frame. If
a tracker does not output a bounding box when the actor is not
occluded, it is given a missed-track (MT ) point. We distinguish be-
tween FP and MT in this way to highlight errors that would point
the camera away from the targets of interest, as is expressed with
FP . We also compute the pixel distance between the center of the
ground truth box and the center of the track, D, and obtain a mean
over all updates, D. We report raw unnormalized results for Mar-
ket and TwoPeople (average of both actors) and normalized results
on VOT-LT2019 [38] sequences in Table 1.

We also ran a qualitative experiment with the leading VOT2018
real-time tracker, DaSiamRPN [76]. We filmed an actor walking
in a pedestrian area using both our tracker and DaSiamRPN [76]
in separate takes. The rest of LookOut is kept constant, includ-
ing actor weighting and actor-specific leniency, which both help
to mitigate tracker noise and errors (but do not affect tracking).
We run two takes each and show all takes in the supplementary
video. While DaSiamRPN fails to track the actor in both takes, our
tracker does. These takes show the importance of our robustness
to imposters in filming.

6.2 Controller Evaluation

In order to evaluate the controller components responsible for
translating script commands to target camera frame radial veloc-
ities, we film multiple qualitative videos and also run an ablated
version of the system.

We film two takes of the same running scene at the same loca-
tion and with the same predetermined path, making sure to keep
the relative motion between the camera and actor consistent. One
take was filmed using our full system, including a minor leniency
that is close to the minimum allowed. The second take was filmed
with an ablated version of the control system, or Standard Con-
trol. The ablated version of the system passes raw tracker values
as is to the PID controller without actor control weight adjustment
(see Section 5.2) and the leniency mechanism (see Section 5.1).
Figure 4 shows camera frame radial velocities for both modes
throughout this scene. Overall, the full controller satisfies scripted
actor framing and largely ignores both actor track noise and cam-
era translational motion that manifests itself as screen space mo-
tion. Following these internal and external noise sources would
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Table 1. Evaluation of Our Tracker and Other Leading State-of-the-Art Real-time Trackers on the VOT Long-term Tracking Dataset

Market, 3 min 20 s, one actor TwoPeople, 10 min 30 s, two actors VOT-LT2019 [38], ~2 min 24 s, one target

T P ↑ MT ↓ F P ↓ D ↓ T (ms)↓ T P ↑ MT ↓ F P ↓ D ↓ T (ms)↓ T P ↑ MT ↓ F P ↓ D ↓ T (ms)↓
Our Tracker 4765 769 71 17.5 18.5 2655 562 132 34.8 20.0 0.200 0.764 0.036 65.0 11.7

MOTDT [43] 4468 777 362 25.5 31.6 1770 1258 320 42.1 32.3 0.229 0.690 0.081 61.3 23.0

SiamMask [66] 4213 78 1316 56.1 14.9 1783 72 1493 91.7 30.1 0.554 0.153 0.292 85.5 12.8

DaSiamRPN [76] 2259 1732 1616 68.0 7.9 1709 528 1110 87.7 14.2 0.494 0.275 0.230 80.9 5.9

DeepSORT [67] 3961 554 1092 57.5 21.1 765 439 2143 147.0 22.6 0.186 0.752 0.061 68.8 13.2

KCF [24] 623 3552 1432 94.2 87.3 377 2819 151 123.3 73.7 0.173 0.736 0.090 47.2 4.4

TLD [30] 18 56 5533 239.4 32.2 670 1 2676 146.1 57.5 0.152 0.010 0.837 159.2 37.2

SiamDW_LT [74] 4751 589 267 28.9 412.6 2693 175 479 42.7 1123.7 - - - - -

Other algorithms outperform ours on VOT. However, the VOT videos are qualitatively different in appearance from our use cases. So we introduce two further
test sequences with 12,300 manually labeled annotations. These videos are more representative because of their cinematic style, both long- and short-term
occlusions, and the presence of distractors, including people in cluttered environments. A high T P (true positive) is obviously advantageous. A low F P
discourages the camera from moving onto a distractor. Some missed tracks, MT s, are tolerable, but especially after a long occlusion, missing the target could
lead to catastrophic target loss. While a low MT score is important, a trivial tracker that always outputs a bounding box, whether or not the target is occluded,
would allow the tracker to be distracted. In the short term, this will lead to F P s, and in the long term, it will pollute that actor’s appearance representation. F P s
are especially detrimental for LookOut, because the camera is controlled by tracker output. An inaccurate position will move the camera away, further
decreasing the chances of recovery and ruining a take. All runtimes include detector latency when appropriate. Detection-based trackers are all run on
tiny-YOLOv3 output. All trackers are run in a single thread, including ours.

Table 2. Ablation Study of Our Tracker on the Two Test Sequences

and the Metrics We Establish in Section 6.1

T P ↑ MT ↓ F P ↓ D ↓ T (ms)↓
Our Tracker 0.822 0.152 0.026 22.6 19.3

No Recovery 0.745 0.088 0.166 35.8 18.7

Faulty Encodings 0.785 0.140 0.075 26.1 19.0

Greedy Encodings 0.698 0.234 0.068 41.2 19.0

Simple History 0.688 0.182 0.131 50.7 19.0

Simple history is a flavor of our tracker but with no feature history
management, only the last seen L encodings are stored in memory. No
recovery is our tracker but without a recovery stage. If a detection matches a
target once, it is accepted as the target, leading to stray incorrect tracks on
distractors, a high F P score, and a lower T P score in the long term. Greedy
Encodings stores a new incoming encoding into the feature gallery even if
similar ones exist, filling up the gallery faster, thus leading to a restrictive
appearance memory. Faulty Encodings accepts detection encodings that are
overlapped with other detections in the scene. This pollutes the gallery with
noisy encodings and detracts from the tracker’s ability to avoid distractors.
Since the gallery sampling strategy is random, all trackers are run 40 times to
ensure fairness.

lead to an uncontrollably erratic camera as shown in the video and
side-by-side radial velocities in Figure 4. Please see this side-by-
side comparison in the supplemental validation video and in the
website as the video pair named Fully Ablated Control under Con-

trol Ablation for both the illustrated visualization and the star
footage of this targeted A/B ablation comparison.

In the video Ablated Multi-Actor Weighting under Control Abla-

tion, we show how using binary weights for actor script transitions
produces a nervous erratic camera at best and usually leads to a
broken take. This happens because the error Tc goes from being
entirely Actor2 focused to entirely Actor1 focused, and vice versa,
in one timestep. This spikes the PID controllers, leading to erratic
corrections and a nervous camera. All other videos with multiple
actors will show behavior with the method outlined in Section 5.2
and with leniency from Section 5.1.

We also film scenes to show the effect of variable leniency on a
single actor and for multiple actors — Hampstead Leniency Switch

and Clown and Calm — in the supplemental website. These videos

demonstrate LookOut’s ability to frame targets according to user-
defined leniency. In the supplemental website, see other video illus-
trations of actor control weights, leniency ellipsis, and actor pro-
cess variances displayed when available in filming metrics.

6.3 Hands-on and End-to-End Evaluation

We designed and ran a small field study on an intermediate proto-
type, composed of two parts. Part 1 consisted of participants build-
ing a script using the LookOut GUI, while Part 2 involved the same
participants filming the scene they have programmed.

Participants: In total, we had 5 participants: 4 participants com-
pleted both parts, while 1 participant only completed Part 1. We
recruited the five volunteers (two female) by posting an advertise-
ment on an amateur filmmakers’ group and through our own social
networks. Three of them work within the film and entertainment
industry (one lighting technician, one backstage support person,
and one director), while two are university students.

All participants had prior experience with filming, from begin-
ner to amateur. Filming experience ranged from filming static
scenes to action shots using Steadicams, from short clips for the
Web to short movies. None of the participants was familiar with
computer vision, nor had they been exposed to the system before
the study. One of the participants reported being familiar with
Blockly from toys such as the SpheroTM, which she previously en-
countered in her part-time work.

Experimental Design: The study was designed to expose par-
ticipants to the full operation of the system, from the creation of
the configuration scripts using the GUI to the actual filming of
the action. To harmonize task complexity across participants, we
asked them to film a predefined sequence, communicated to them
through a storyboard (printed in color on a single A3 page). Note
that this form of study does not check creativity in run-and-gun
scenarios. Rather, it checks productivity [57] when a DP is working
solo.

Designing a suitable storyboard required careful consideration
to balance conflicting requirements. On the one hand, we wanted
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a setting that really challenges visual tracking algorithms and the
storyboard to be particularly complex for a single operator to film
in one shot. These requirements were to assess the system’s ability
to deal with challenging filming situations and the ability of the
GUI to expose a spectrum of behaviors.

On the other hand, the storyboard design was constrained by
concerns around the health and safety of participants (and to
satisfy our research ethics review requirements). These concerns
made us rule out any sequences involving stairs, streets with ve-
hicles, or any other scenes that could be deemed unsafe. We also
limited the number of actors required to two and the overall study
duration for each participant to one hour.

After a number of iterations involving consultation with a sepa-
rate filmmaker, we agreed on the storyboard. Like many long takes,
it incorporates a variety of shots, some of which would be quite
hard to implement with standard filming techniques. One such dif-
ficult shot implements a sudden camera transition between the two
actors, followed by the participant having to run to keep up with
the actor named “Blue.”

Another hard shot is the swooping pan, in which the camera
starts low and ends up high as the participant moves around the
tree until the individual is behind actor “Red.” This would normally
be hard to execute, as it involves the camera operator moving from
a crouched to a standing position while ensuring that the actor is
kept within frame. With LookOut, the camera angle is adjusted au-
tomatically to frame the actor, letting the camera operator focus
on one’s own movement. The storyboard can be found in the sup-
plemental material.

As confirmation that the story and park setting were challeng-
ing themselves, two of our participants commented that, if they
had the option, they would split the scene into separate shots
(“I would segment the scene into different shots” and “normally
I would split the scene into several parts”).

Procedure: Participants were given verbal instructions provid-
ing a brief overview of the user interface and the scene they were
required to film. The setting was a local park, in late afternoon
through dusk. Participants were handed a copy of the storyboard
and left on a bench to create the required configuration scripts on
a laptop running the GUI. Figure 8 shows an example of a script
created by a participant.

Once participants declared that they were satisfied with the
scripts, they were provided with a quick overview of how the rest
of LookOut works and invited to start filming. As they tested their
scripts, they were allowed to go back to the GUI and change as-
pects they thought did not work very well. For example, one par-
ticipant went back and changed the speed of transitions, having
realized that the “very fast” setting might miss locating the actor
entirely.

Within 50 minutes of the start of the study, or as soon as partic-
ipants filmed a scene they were satisfied with, the filming ended,
and participants were asked to take part in a short interview (10
minutes) about their experience.

Configuration Scripts and GUI: All five participants who at-
tempted Part 1 of the study were able to successfully use the GUI
to create configuration scripts to match the storyboard. This pro-
cess lasted between 20 to 25 minutes, and was carried out inde-
pendently by participants, although they were allowed to ask the

Fig. 8. An example of a configuration script programmed by one of the

participants. The participant opted to use whip pans and actor-based cues

to automate most of the camera’s behavior change.

experimenters questions. Participants were generally pleased with
the UI’s functionality. One participant commented that “program-
ming the framing was like coding, so it was simple enough” while
another participant stated that he was happy with the UI’s behav-
ior possibilities: “already a lot with actor recognition and speech
recognition.” However, some participants did mention the need for
a “zoom function or focal length change.” In addition, one partici-
pant wanted a feature to track objects: “e.g. if you wanted to track
a statue while walking around it.” Although LookOut supports ob-
ject tracking, the UI did not offer this possibility at the time, letting
them select only actors.

In some cases, after one or more attempts at filming the scene,
participants realized that they were not happy with some of the
details in their configuration scripts. In these cases, participants
edited the configuration scripts using the GUI. In one case, a
participant realized that the duration for a timed cue was too
short; thus, the participant adjusted the value. In another case, the
participant was not happy with the angle of the yaw in a pan; thus,
the participant increased it. The adjustments took less than 5 min-
utes, as the performed changes were minor parameter settings. No
issues were reported or observed with the interface.

These findings confirm that the task of scripting the behavior
of the LookOut controller can be completed with minimal training
by novice users. The editing of the parameters after a script was
tested indicates that participants were able to relate the two and
could refine the script behavior to match their needs.

Filming and Resulting Footage: In the remaining 15 to 25
minutes, two of four participants had enough time to record a
long take that they were happy with for this scene. In the other
two cases, there were issues with the tracking of actors that led to
the scene not being adequately filmed within the prescribed time
frame. This was caused by the lighting being uncharacteristically
bad: on most film sets, there would be procedures in place to reduce
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the effect of strong sunlight filtering through the trees, to keep the
actors consistently lit.

One participant pointed out that even though they did not have
a viewfinder during filming, she could tell from the physical move-
ment of the camera that it was smooth: “from the physical move-
ment of camera it looked smooth.”

Participants also spoke about the convenience of having auto-
matic movement of the camera, as it meant that they could focus
on other aspects of the filming, such as keeping up with the actors.
One participant described the task of keeping the camera focused
on an actor as “you can just track someone without caring about
it.”

Participant Comments: The aim of the storyboard was to
have several different types of shots, some of them that would
be harder to execute with traditional filming equipment. One of
these shots involved having the camera quickly panning between
the two actors: “the whip pan was easier with the AI, it found and
tracked the subject automatically. Otherwise I would have to re-
hearse that 3–4 times to get it correctly.” By using LookOut, the
participant was able to correctly capture the shot from the first
take.

Participants were particularly pleased with using voice as a trig-
ger for the next action in the scene: “voice activating the cues
worked very well.” One participant stated that they “could see di-
rectors using that to program in actor’s lines.” This feature simpli-
fied the filming process for participants, with all participants who
attempted Part 2 using speech triggers within their scripts.

When asked if there were other camera behaviors they’d like to
see in LookOut, one participant mentioned tracking other objects,
which we experimented with using a generic class object tracker
(see “Other Trackers” on the supplemental website). Three partic-
ipants mentioned zoom; although our current hardware limits op-
tical zoom, we have made use of sensor-based zoom (see “Zoom”).
The fifth participant said that the existing behaviors were already
a good toolbox and specifically pointed out voice triggers as useful
building blocks.

Shot Breakdown: Takes were ruined either due to faulty track-
ing in bad lighting on the early version of the tracker used (46%),
participants forgetting to fire triggers they placed (12%), voice
recognition failure (8%), and another 26% due to miscellaneous is-
sues (bystanders getting in the shot, actor mistakes, batteries run-
ning out, etc.). The rest (12%) yielded usable takes. The bulk of
ruined takes come from tracker error, which motivated the devel-
opment of our final proposed tracker and the underlying princi-
ples we lay out in Section 4. We have used the latest version of the
proposed tracker for filming visually challenging scenes, includ-
ing those in equally harsh lighting —“Zoom Run” and “IRL Tracker
Comparison.”

6.4 Critique by Senior Filmmakers

We sought out three senior filmmakers, separate from the filmmak-
ers who influenced the design of LookOut and separate from those
who did the Hands-On Evaluation (Section 6.3). Each of them has
been working as a professional DP for 9, 13, and 25 years, respec-
tively. Each has a mix of experience, in both scripted scenes with
crew and actors and run-and-gun filming for documentaries or

Fig. 9. Videos shown to senior filmmakers. (a) Rocky escarpment — cam-

era operator climbing on foot and with one hand free. (b) Bike ride — cam-

era operator also riding a bike. (c) Pyramids — camera operator walking

backwards on stairs.

journalism. We interviewed them separately, each time showing
the same three unedited video examples shot using the LookOut
system (see Figure 9). We asked the same predefined set of ques-
tions to prompt them to think aloud while watching the videos.

The questions are listed in the supplementary material but can
be broadly grouped as concerning (i) the equipment and people
needed to film these long takes normally (without LookOut) and
(ii) critiques of both the footage and current LookOut capabilities.

First, to shoot such takes without LookOut, two of the filmmak-
ers have used drones and would consider using them here if a li-
censed pilot were available and the noise was not prohibitive. Two
of them said they would use cranes for video-A if the budget allows.
One complained, however, that multiple cranes have bad place-
ment of viewfinders, resulting in them shooting blindly for long
periods. For video-B and video-C, one said that he would use a
Steadicam and the other two had specific two- or one-handed gim-
bals (like that modified for LookOut) that they would try again
despite having small and awkward viewfinders.

They each would need a second person at minimum, and usu-
ally more, to help with typical stabilization-only filming. Indepen-
dently, they all said that if only one extra helper were available,
then that person would be the spotter for the operator. A spotter
physically guides the operator around obstacles.

Second, their views of the footage and the LookOut system were
very positive, with some caveats. The two more senior DPs ex-
pressed the sentiment that LookOut would have no place in a big-
budget project because the Director and DP can give orders ver-
bally that get carried out eventually. Also, those two would need
to use LookOut multiple times before they would trust its relia-
bility and, ideally, prefer that colleagues make some films with it
first. Transcribed interview quotes are in the supplemental mate-
rial, which include comments such as “That would be so helpful!
Especially in those run-and-gun situations, documentary, travel,
journalism. If you’re filming something that won’t happen again,
you can focus on the other things” and “I could be more creative
once I got used to it.”
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6.5 Qualitative LookOut Results

LookOut has been used by the authors, by test subjects, and by
novices who usually (but not exclusively) filmed using existing
behavior scripts. A representative cross-section is shown in the
supplemental videos webpage. Some noteworthy examples include
sports in which the operator is participating, such as skateboarding
or using one hand while playing frisbee, scrambling, or cycling, for
example. For the Gnome and Plumbing-shop sequences, we filmed,
as an exception, using the DaSiamRPN [76] tracker within Look-
Out, to cope with unusual object categories, though this required
multiple takes. In contrast, the vast majority of takes using our
tracker worked out on the first try.

7 LIMITATIONS AND DISCUSSION

The LookOut premise, software, and hardware each have limita-
tions. While it would be informative to do the end-to-end eval-
uation under run-and-gun conditions, which represent the vast
majority of users, those situations are rarely repeatable and are
considered dangerous from an ethical experimentation perspec-
tive. That led us to use simple scripted scenarios for that evaluation.
The senior filmmakers are likely right that big-budget productions
will be reluctant to use LookOut. The field study tested with par-
ticipants from our low-budget demographic of filmmakers with a
fixed storyboard, but an ideal comprehensive user study would fo-
cus on adventure-athletes and journalists in somewhat dangerous
conditions to check real run-and-gun scenarios.

The LookOut GUI worked better and more intuitively than ex-
pected. The detector and tracker combination, too, performs ad-
mirably across highly diverse scenarios, though they are designed
initially for tracking actors across occlusions in handheld films and
are unremarkable on the standard Computer Vision benchmarks
MOT [48] and VOT [38]. The single weakest component across
the LookOut system is the detector. We have seen it confuse the
tracker when the actor hides or gets too small, there is too much
motion blur, or actors wear the same uniform. For now, better de-
tectors are available but not with the low-latency required by the
controller. LookOut is built in Python, which is not optimized for
real-time and multiple threads. We chose this for easier compar-
ison with other trackers and rapid prototyping; thus, efficiency
gains are possible. Like other appearance encodings, ours is some-
times susceptible to harsh and variable lighting (Figure 10), which
makes the system most vulnerable at dusk or dawn, and possibly
when switching between indoors and outdoors. On-the-fly camera
image processing optimized to improve vision task performance
similar to that in [61] may help.

There are potentially two improvements for the hardware. First,
some users requested that LookOut also manage focus-pulling and
zooming. This would require a star camera for which both fo-
cus and focal length is software controllable in real time. While
we have showcased a hardware-limited version of zooming with
our star camera, further real-time control of both focus and focal
length is required to better realize this improvement. We have not
found a suitable model yet. Further, we use a guide camera with
a limited field of view; 360◦ cameras are rarely used for cinematic
filming due to limited resolution but could function as guide cam-
eras. Then, new behaviors could better “anticipate” actors that are

Fig. 10. Harsh light and lens flares can upset the detector and lead to gaps

in tracking. If such a lighting change is fast enough and then long lasting,

the tracker may not adequately associate new encodings with known ac-

tors, leading to a loss of tracking.

not in frame for the star camera yet. Extra sensing capability on
the guide camera either through depth or infrared would further
improve tracking and cinematic control. We will release the Look-
Out blueprints and downloadable system.
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