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Abstract

Deep feature spaces have the capacity to encode complex
transformations of their input data. However, understanding
the relative feature-space relationship between two transformed
encoded images is difficult. For instance, what is the relative
feature space relationship between two rotated images? What
is decoded when we interpolate in feature space? Ideally, we
want to disentangle confounding factors, such as pose, appear-
ance, and illumination, from object identity. Disentangling these
is difficult because they interact in very nonlinear ways. We
propose a simple method to construct a deep feature space,
with explicitly disentangled representations of several known
transformations. A person or algorithm can then manipulate
the disentangled representation, for example, to re-render an
image with explicit control over parameterized degrees of free-
dom. The feature space is constructed using a transforming
encoder-decoder network with a custom feature transform layer,
acting on the hidden representations. We demonstrate the ad-
vantages of explicit disentangling on a variety of datasets and
transformations, and as an aid for traditional tasks, such as
classification.

1. Introduction
We seek to understand and exploit the deep feature-space

relationship between images and their transformed versions.
Different feature spaces are illustrated in Figure 1, and
support different use-cases: separability helps discriminate
between categories such as identity, while invariance improves
robustness to nuisance variables during data capture. Taking
head pose as an example, what is a nuisance for one task could
be the focus of another. Therefore, we propose deep features
with transformation-specific interpretability, which combine
both (1) discriminative and (2) robustness properties, with the
further benefits of (3) a user-guided parameterized space for
controlling image synthesis through interpolation.

Learning such a feature space is difficult. In image data, trans-
formations of objects usually couple in complex nonlinear ways,
leading to an entangling of transformations. The reverse process
of disentangling is then especially hard. An obvious post hoc
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Figure 1. Three alternative feature spaces and how each encodes images
of the same person. (Left) A feature space that is hard to interpret,
similar to one learned by a typical CNN. While transformation
information is present, it is not obvious how to extract that directly from
the feature space. (Middle) A transformation-invariant feature space.
(Right) An interpretable feature-space, where ordered transformations
of the input subject relate to ordered, structured features. This is like
a learned metric space, but also allows for image synthesis. Images
of another person are not shown, but would ideally project similarly,
albeit elsewhere in each feature space.

solution is to learn disentangling transformations using a regres-
sor [31], but this is a time-consuming and inexact process. We
cannot assume that the change in representation of a chair and its
rotated twin is necessarily the same as the change in representa-
tion between a banana and its equally rotated twin. We propose
disentangling as an end-to-end supervised learning problem.
Some image variations are hard to quantify or explain. But oth-
ers, for instance 2D and 3D warps or color appearance changes,
allow ready access to pre- and post-warp image pairs, along
with their ground-truth transformation parameters. These easier
transformations, we find, lend themselves to smooth parameteri-
zation in feature space, and therefore interpretability. One could
argue that it is nicer to learn everything only from raw data,
but the transformation parameter labels considered here are ob-
tained with little or no human effort. We therefore pre-define the
feature-space structures that encode basic transformations, and
train neural networks that map into and out of this feature-space.

We take our motivation from considering the feature space
structure, introduced by convolutional neural networks [30]
(CNNs). CNNs owe their success to two differences from the
older and more general multilayer perceptrons [36]: 1) the recep-
tive field of deep neurons is localized to a small neighborhood,
typically not greater than 7×7 pixels from the layer below, and
2) incoming weights are tied between all translated neurons. The
motivation behind translational weight-tying is that correlations
in the activations are invariant under translation. The side-effect
of enforcing such a structure on the weights of a neural network
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is that integer pixel translations of the image input induce
proportional integer pixel translations of the deep feature
maps. This phenomenon is called equivariance, meaning the
feature-representation of a shifted input is the same, save for
its location. We explore continuous transformation equivariance
for CNNs, and for the first time, for fully connected models.

In this paper, we consider rotations in 2D and 3D, out-of-
plane rotations, small translations, stretchings, uniform scalings
and changes in lighting direction. For these transformations
CNNs do not generally display the equivariance property;
although, there are a number of works, which do tackle the
problem of rotation [6, 10, 41, 12, 16, 28, 50, 15, 56]. The
main problem with all these approaches (which we detail
in the next section) is that the equivariance properties are
handcrafted, and suffer from unmodeled oversights in the
design process. For instance, all but [50] consider equivariance
to discretely sampled rotations, when real world rotations
are in fact continuous. Given that we can simulate many
image-space transformations, it seems only natural to simply
acquire equivariance through learning.

We now cover related work and theory, followed by Section 3
where we introduce our method and the new feature transform
layer, and Section 4 where we test our framework on de-render–
re-render problems and for view independent features.

2. Related Work and Theory
Here we outline basic concepts for us to formalize the task

of encoding interpretable transformations, and break down a
list of related works into categories of handcrafted or learned
equivariance in traditional vision and deep learning.

Definition 1 A function f : X → Y is equivariant [49]
under a set of transformations Θ if for any transformation
T :Θ×X→X of the input, we can associate a transformation
F :Θ×Y→Y of the output such that

Fθ[f(x)]=f(Tθ[x]), (1)

for all θ∈Θ. Transformations Tθ and Fθ represent the same
underlying transformation but in different spaces, denoted θ.

Equivariance is desirable, because it reveals to us a direct
relationship between image-space and feature-space transforma-
tions, which for deep neural networks are usually elusive [31].
Note that invariance is a special case of equivariance, where
Fθ=I is the identity for all input transformations.

Definition 2 We define an interpretably equivariant feature-
space to be an equivariant feature-space as in Equation 1, where
the transformation functionsFθ and Tθ are quantitatively known
and can be implemented for all θ, x and f.

At an abstract level, an equivariant function is one where
some level of structure is preserved between the input and out-
put. Interpretability is the added requirement that for a given θ
we know how to applyFθ and Tθ. It may be the case that one of

these transformations is complicated and cannot be written down
as a mathematical expression in closed form (e.g., the rendering
equation), but as long we are able to simulate it that is enough.
As we show in Section 3.2, one way of preserving the structure
of transformations across a feature mapping is via a condition
called the homomorphism property. In all of the subsequent re-
lated works, equivariance to transformations is the central theme.

Handcrafted methods In the 1980s, Crowley and Parker
[9] studied scale-space representations. These are formed by
convolving images with scaled versions of a filter. Scale-space
methods exhibit interpretable equivariance. They can be
extended to invertible transformations by transforming the
filters [35, 1] but has computational complexity exponential in
the number of degrees of freedom (DOF) of the transformation.
Furthermore, we can only convolve with a finite number of
filters, when in reality many transformations are continuous.
Freeman and Adelson [13] and Lenz [33] simultaneously solved
the continuity problem, through orientation steerable filters wθ.
These can be synthesized at any continuous orientation θ. These
are formed as a linear combination of fixed basis filters φn:

wθ(x)=
N∑
n=1

αn(θ)φ(x). (2)

αn(θ) are known as the interpolation functions. These are still
band-limited but unlike scale-space the frequency character-
istics are easier to design. Steerable filters were extended to
most transformations with one DOF (one-parameter subgroups)
[47, 45], for instance, 1D translations, 2D rotations, scalings,
shears, and stretches. For these transformations, there is a func-
tion ρ, under which transformation θ becomes a shift, so I(x)

Tθ→
I(ρ−1(ρ(x)− tθ)), where tθ is the shift. Meanwhile, Perona
[42] showed that in practical situations some transformations
cannot be enacted exactly using steerable functions, for instance
scale and affine transformations (specifically those which do not
have compact group structure). He showed these can be approxi-
mated well with very few basis functions, computed from the sin-
gular value decomposition of a matrix of transformed versions
of a template patch. This is limited by template choice, SVD ef-
ficiency, and figuring out the interpolation functions for steering.
More recently Hasegawa [17] and Koutaki [26] used a variant
of this method to learn an affine-equivariant feature detector.

Invariance to 1 DOF transformations can be gained via
the Fourier Transform (FT) Modulus method [25]. This uses
the time-shifting property of the FT w(x−t) FT⇐⇒ eiωtW(ω),
where W(ω) is the FT of w(x). The FT modulus
|eiωtW(ω)| = |W(ω)| is independent of the shift t. As
noted in Scattering Networks [4], this operation removes exces-
sive localization information and is unstable to high-frequency
deformations noise. They instead take the modulus of the
response to a bank of discretely rotated and scaled wavelets,
repeatedly in a deep fashion. This is perhaps the most successful
version of a handcrafted deep equivariant feature map.



Neural Networks Equivariance in deep learning has very
deep roots as far back as the early 1990s. Barnard and Casasent
[2] split the main approaches to transformation invariance into
three categories: 1) Data augmentation: This is effective and
simple to implement, but lacks interpretability. 2) Preprocessing:
This is effective, but cannot be applied to geometric transforma-
tions. 3) Structured weight networks: These are numerous in the
literature. CNNs [30] are the most famous example. Pixel-wise
integer shifts of an input image will induce proportional pixel-
wise shifts in the deep feature space. For partial translation
invariance, there is the Global Average Pooling layer [34]. For
rotations there are two major approaches for discrete rotations:
rotate the filters [6, 8, 16, 41, 15, 56] and rotate the input/feature
maps [10, 12, 28]. Continuous rotations were recently proposed
by [50]. They restrict their filters and architectures so that
the convolutional response is equivariant to continuously
rotated inputs. Beyond rotation, [18] warp the input, so that
general transformations are globally linearized, facilitating the
application of CNNs. This requires prior knowledge of the type
of transformation and where it is applied in the image. [8] can
deal with multiple transformations, but these are restricted to
group-theoretic structures. [22] are able to explicitly transform
feature maps with the spatial transformer layer, but do not trans-
form features in the channel dimension. In contrast to the above
methods, our method is general and does not require extensive
architectural engineering. We can also disentangle confounding
factors such as out-of-plane rotation and lighting direction.

Deeply Learned Equivariance Some have sought to learn
equivariance directly from data. These broadly split into
purely generative, purely discriminative and auto-encoded
methods. Discriminative: [32] regress affine equivariant
feature-descriptors directly using supervised data. Their frame-
work is easy to implement, but restricted to group-theoretic
transformations. Generative: [11] generate views of 3D chairs
by regressing appearance with a CNN from an embedding
space. In InfoGAN, [5] instead used a mutual information
maximizing criterion for unsupervised learning of the ‘natural’
transformations in a training set. This mostly manages to
disentangle transformation, but unlike [11] is non-interpretable.
Auto-encoded: [27] presented the deep convolutional inverse
graphics network (DC-IGN), a partially supervised variational
auto-encoder [24], equivariant to out-of-plane rotation and
relighting. Their model is impressive but requires a complicated
training procedure, is partially interpretable, and unlike us
does not fully exploit known supervised information about
transformations. [39, 19, 55] instead reconstruct transformed
versions of an image, given the image and transformation
parameters as input. These are similar to our method, but cannot
be used to extract interpretable transformation equivariants,
which we can do. [7] does learn interpretable equivariance to
manipulate images of 3D objects from 2D images, but this is
only demonstrated on 3D rotations. [43] also does learn inter-
pretable equivariance for 3D volumes from 2D images, but their

representation space is entire 3D volumes. This is impressive,
but it is computationally expensive to represent entire volumes
in memory, when sometimes it may not be necessary.

3. Method
CNNs are interpretably equivariant to pixel-wise translations

of their input up to boundary effects, but not to transformations
such as 2D and out-of-plane rotations, uniform scalings,
stretches, relighting, flips, etc. In this section we design a
neural network to learn an interpretable transformation equiv-
ariant feature-space. Our method can cope with continuous
transformations on intervals, for example, uniform scalings
and stretches, and continuous transformations on circles,
such as, geometric rotation and relighting, but not discrete
transformations, like vertical flips. In Section 3.1 we outline
our general framework and in Section 3.2 we introduce the
feature transform layer, a channel-wise analogue of the spatial
transformer, which can also be applied to fully-connected layers.

3.1. Problem Setup

We assume that we are given a training set D =
{(x1, x̃1θi,θ1), ...,(xN , x̃

N
θi ,θ

N)} containing pairs of views of
transformed examples (xi,x̃iθi) and relative transformation vec-
tors θi. The relative transformations may be the result of a sensor
measurement, or they may be the result of artificial data aug-
mentation, in which case the training set is potentially infinite.
The task is to predict x̃iθi given xi and θi (from now on we just
write θ for short). We use relative transformation information in-
stead of absolute transformations, because there is no canonical
pose, which generalizes across object classes, where alignment
between, say, a banana and an airplane does not make sense.

Many images x∈X are formed from capturing an object
o∈O in the 3D world projected via a function Π:O→X onto
a 2D canvas. To transform image x into x̃θ we have to invert Π
to find o, perform the world-space transformation and re-project
back into image space, so

x̃θ=Π[Tθ[o]]=Π
[
Tθ
[
Π−1[x]

]]
. (3)

The problem with this approach is that Π is in usually
non-invertible. Our solution is to infer the 3D object o given x
via statistical methods. CNNs are good at this kind of task (e.g.,
[27]), so we opt to use a CNN. Now storing a full volumetric
representation like in [43] is costly, so we instead opt to use a
compressed feature encoding e(x) to approximately represent o,
this requires we also have a feature-space representation of the
transformation, Fθ—see Section 3.2 for details. In our case the
feature space is partially learnable, with pre-defined structure
imposed by Fθ. Our basic model is shown in Figure 2, it is an
encoder-decoder network. Loosely speaking

e(•) approximates Π−1[•],
Fθ is the feature space equivalent to Tθ,

d(•) approximates Π[•],
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Figure 2. We enforce equivariance by minimizing the loss ` between
reconstruction of transformed features dθ and a transformed target
x̃θ. Given just x, the encoder-decoder network does not have enough
information to produce a transformed output, thus supplying the
missing information θ via the feature transform layer (FTL) forces
the network to learn a mapping in and out of the FTL. Critically,
whereas other approaches, such as transforming auto-encoders [19]
and InfoGAN [5], learn the reconstruction to be sensitive to feature
transformation information, we can simultaneously learn to map from
images to transformation equivariant features.

where we have written Π−1[•] to mean inversion of the
projection if possible, or approximation of it. We train the
weights of the encoder and decoder by minimizing a summed
reconstruction loss `, where

L(D)=
∑
i

`
(

d
(
Fθi
[
e(xi)

])
,x̃iθ
)
. (4)

In our experiments we use a diverse set of losses, namely, L1
loss, SSIM, and balanced cross-entropy. Note that since we
define Fθ the feature space of encodings e(x) is interpretable
by Definition 2. In Section 3.2, we demonstrate an encoding,
which enforces explicit disentangling and from which we can
gain approximate transformation invariance ‘for free’.

3.2. The Feature Transform Layer

The feature-space equivalent of the image-space transform
Tθ is the feature transform layer Fθ. It is an analogue of the
spatial transformer [22], but applied to general feature-spaces,
not necessarily with spatial dimensions. This means that we
can apply it to fully connected layers as well as convolutional
layers. It is easiest to describe the feature transform layer via
its implementation.

Consider a feature vector e, which may be a column of
CNN feature channels above a pixel location in an image, or
the output of a fully-connected layer. The feature transform
layer performs a linear transformation of e via matrix Fθ, such
that the output y of the layer is

y=Fθ[e]=Fθe. (5)

We only consider linear transformations, where

Fθ2θ1 =Fθ2Fθ1. (6)

This condition says that if we apply transformation θ1 to an
image, followed by transformation θ2, which we have written
as θ2θ1, then in feature space this should be equivalent to
applying Fθ1 followed by Fθ2 . We refer to Equation 6 as the

homomorphism property. Abstractly, we can think about it as
forcing the neural network to learn a mapping from image-space
to feature-space, which preserves the intrinsic structure of the
transformations. The homomorphism property implies that (see
Supplementary Material)

Fθ−1
1

=F−1θ1 . (7)

This means that invertible transformations of the input are
invertible in feature-space. The homomorphism property is
key to ensuring that transformation information is not lost when
mapping into feature-space. Examples of Fθ are N-dimensional
rotation matrices, also known as SO(N), full-rank diagonal
matrices, or most generally the group of invertible N ×N
matrices, known as GL(N). We use rotation matrices, Rθ,
which have the additional property of being orthogonal or
norm-preserving. This means that we can use the feature vector
lengths as transformation invariants because

‖Rθe‖22=e>R>θ Rθe=e>e=‖e‖22, (8)

which shows that ‖Rθe‖22 is in fact independent of θ. Feature
vectors are usually high-dimensional consisting of many
channels. We thereform implement the feature transform layer
by applying the same rotation matrix on multiple groupings of
channels, which we call subvectors of e. We can then define a
larger set of invariants, by measuring the relative phase between
different subvectors. These are invariant to θ, because if e1 and
e2 are two subvectors of e, then

(Rθe2)>Rθe1=e>2 R>θ Rθe1=e>2 e1, (9)

which is independent of θ. If e1 = e2, this reduces down to
the feature vector length. We denote the concatenation of all
subvector dot products as ‖e‖F . While at first not obvious, we
can encode many transformations using rotation matrices, even
ones which do not have periodic structure. The trick is to map
the domain of the transformation onto the half-circle/sphere, see
Figure 3. We prefer to do this rather than using another, perhaps
more natural, representation because of the convenience of
taking L2-norms and inner products to form invariants.

Disentangling We now consider how to disentangle
transformations. Since we can model transformations, whose

Figure 3. We encode transformations by mapping them on to circles
and N-dimensional hyperspheres in feature space. This parameteriza-
tion can deal with periodic and bounded transformations on an interval.
The L2-norm of the result feature vectors are transformation invariant.



Method x̃θ|θ x̃θ|θ,x θ|x CNN MLP Interpretable Supervised Image size
DC-IGN [27] 3 7 * 3 3 † ‡ 150x150
InfoGAN [5] 3 7 7 3 3 7 7 64x64
Generating Chairs [11] 3 7 7 3 3 3 3 128x128
Transforming AEs [19] 7 3 7 7 3 7 3 96x96
Learned Visual Reps. [7] 7 3 7 7 3 3 7 96x96
Unsup. 3D from images [43] 7 3 7 3 3 3 7 30x30x30
Covariant features [32] 7 7 3 3 3 3 3 57x57
Spatial Transformer [22] 7 3 7 3 7 3 - Any
Ours 7 3 3 3 3 3 3 150x150

Table 1. Comparison of method scopes. In the first 3 columns we display whether a method can generate an image x̃θ given just parameters θ, x̃θ|θ;
conditioned on an original image x̃θ|θ,x; or infers transformation parameters given an image θ|x. * Qualitative relationship only.†Correspondence
between feature dimensions and transformations known, qualitative relationship only.‡Partial supervision: minibatches grouped into variation
of single parameter, but values not given.

parameters exist on a circle or interval, we can model each
independent transformation DOF by mapping it to a different
circle or half-circle. Some transformations, like lighting
direction, are more conveniently mapped to the surface of a
3D-sphere. Thus the feature transform layer is

Fθe=

Rθ1
. . .

RθN

e, (10)

with possible tied θi when we apply a transformation to multiple
subvectors. The feature transform layer is simple to implement—
it is just a matrix multiplication and the block diagonal structure
allows efficiency saving via reshapes. In our experiments we
found a slow down of just 2%. Furthermore, it can be applied to
convolutional features in synchrony with a spatial transformer
[22] for complete control of both spatial and feature properties.

4. Experiments, Results, and Discussion
d Below we demonstrate the ability of our system to

learn meaningful features on MNIST [54], MNIST-rot [29],
the Basel Face Dataset [20], and ModelNet10 [51]. We
choose these datasets because they demonstrate our system’s
general-purpose usage and performance on 2D and 3D images,
for transformations with complex entanglement, and with and
without information loss. Our encoder-decoder structure is
shown in Figure 5. They are all implemented in TensorFlow.

4.1. MNIST: 2D images—2D transformations

This experiment demonstrates our system’s ability to disen-
tangle confounding transformations and how it reconstructs an
input, after manipulation of the features. The MNIST dataset
[54] contains 50k training, 10k validation, and 10k grayscale
test images of handwritten digits, size 28× 28. The images
are very simple, usually just a pen-stroke. We apply random
scalings in the x- and y-directions followed by a random 2D
rotation. Due to the simplicity of the images, we use an MLP

for both encoder and decoder. Both encoder and decoder have 3
layers, separated by batch normalization [21] and leaky ReLU
nonlinearities [37] apart from the input and output of the feature
transform layer, which are linear. All layers except the input
and output are 510 neurons wide1. The feature transform ma-
trices are a block diagonal composition of three 2D rotation
matrices repeated 85 times: rotation Rrot, x-scaling Rscale-x, and
y-scaling Rscale-y. We train with the Adam optimizer [23] for
200 epochs, with minibatch size 128 and initial learning rate
10−3. After training we pass a random digit from the test set
through the encoder and transform the code by multiplying by
feature transform matrix Fθ. In Figure 4 we show random digits
from the test set, slowly varying the transformation vectors on
an interval. Each row shows a random digit under a combination
of rotation, x-, and y-scaling. Notice how the encoder-decoder
successfully learns to rotate digits, solely from the feature trans-
formation. Notice also that the scalings are applied in the x- and
y-directions of a coordinate system aligned to the canonical pose

1We use this non-standard width because we model three transformations,
with each transformation modeled on a separate circle. So feature-space
dimensionality must be a multiple of 3×2=6. Furthermore, the value of 510
is close to 512, a common feature-space dimensionality.
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Figure 4. MNIST reconstructions: The left most column indicates
transformation. The second to left column shows the input. Subsequent
columns show the transformed images. The reconstruction struggles
slightly with enlarged images, on the left, but on the whole clearly
show that we have control over the disentangled representation. Notice
that the x- and y-scalings are in the coordinate frame of the canonical
pose of the digits. This demonstrates the ability to disentangle
confounding transformations.



of the digit. The system struggles when the images are magni-
fied, nonetheless these results demonstrate clearly that we can
learn a feature-space, where we have control over reconstruction
transformations. MNIST-rot Next we explore if we could im-
prove classification on the MNIST-rot dataset, with an explicitly
rotationally equivariant feature space. We feed the learned trans-
formation invariant subvector relative phases ‖e(x)‖F into a
classifier f (Figure 5) and use the output f(‖e(x)‖F) for classi-
fication. MNIST-rot [29] is a specific subset of MNIST split into
10k train, 2k validation, and 55k test images, rotated randomly
on the circle. Our results are in Table 2. While we do not achieve
state-of-the-art on this benchmark, we do beat standard CNNs
trained with data augmentation. All models better than us are
designed specifically for rotation. This indicates that in low data
scenarios, it pays to exploit our prior knowledge of how trans-
formations affect data. We can use this knowledge to construct
meaningful feature spaces, where equivariance and invariance
can be utilized. We found that it helps to add a regularization
term ‖‖e(x)‖F−‖e(x̃θ)‖F‖22 to the loss function encouraging
transformed encodings of the input to be equal in length

4.2. Basel Faces: 2D images—3D transformations

In this experiment, we return to disentangling transformations
for superior control in reconstruction. The Basel Face dataset
[20] contains synthetic face renderings encoded using a PCA
model. We can randomly draw faces with vertex positions s and
vertex colors t from the model by sampling two 199-dimensional
vectors α and β from a unit Gaussian and retrieving the face by

s(α)=µs+Usdiag(σs)α, (11)
t(β)=µt+Utdiag(σt)β. (12)

U• contains the PCA directions and {µ•,σ•} are the PCA
means and per-dimension standard deviations. We use our

Method Test error (%) Flexibility
SVM [29] 11.11 3
Transformation RBM [46] 4.2 3
Conv-RBM [44] 3.98 3
CNN [6] 5.03 7
CNN [6] + data aug* 3.50 7
P4CNN rotation pooling [6] 3.21 7
P4CNN [6] 2.28 7
Harmonic Networks [50] 1.69 7
RotEqNet [15] 1.16 7

Ours (MLP variant) 4.90 3
Ours (CNN) 2.14 3

Table 2. MNIST-rot test accuracy: We beat standard CNNs with
similar architectures. Even our MLP variant can beat a baseline CNN.
The state-of-the-art is reserved for models specifically designed for
rotation. FLEXIBLE models can learn general transformations, while
others only deal with translation and rotation. Interestingly, we beat
[6], which was designed for rotation.

Facial transformer MNIST-rot network ModelNet network
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Figure 5. The architectures used in our experiments. LEFT: Facial
transformer, CENTER MNIST-rot network, RIGHT: ModelNet network.
The first set of numbers indicate input tensor shape, the second set of
numbers indicate operation (conv: convolution, dcnv: deconvolution,
FTL: feature transformer layer). The number trailing the / is the stride.
For deconvolution, we first nearest-neighbor upsample, followed by
convolution.

framework to reorient out-of-plane rotations and relight faces.
This is a difficult task, because the encoder-decoder only sees
2D views of a self-occluding 3D scene. The encoder has to
learn to decouple the complex interaction between light and 3D
surfaces, while inferring missing information, then the decoder
has to convert this representation into a faithful ‘rendering’ of
the transformed scene. A key difficulty is to infer occluded
surfaces, which may be disoccluded upon out-of-plane rotation
of the face.

We generate 1000 random RGB faces of size 150× 150.
For each face we generate 240 random views varying azimuth
[−43◦,43◦] and elevation [−15◦,15◦] from head on (we use
a right-handed coordinate frame with the x-axis pointing
through the nose and z-axis pointing upwards), and with
random lighting directions azimuth [−57◦,57◦] and elevation
[−57◦, 57◦]. Both the rotations of the faces and lighting
positions can be efficiently encoded using 3D rotation matrices
Rrot and Rlight, each with 2 degrees of freedom—azimuth ψ
and elevation θ, but no roll. Thus a natural form for the feature
transform matrices, which we use is

Fθ=

[
Rrot

Rlight

]
(13)

R•=

 cosθ• sinθ•
1

−sinθ• cosθ•

 cosψ• −sinψ•
−sinψ• cosψ•

1

 (14)



Figure 6. (Viewed best in color). Relit and re-rotated reconstructions from our Basel face encoder-decoder model. The input faces shown on the
left (blue box) are not presented to the encoder-decoder at training time. From left to right we vary one degree of freedom only. Outside the large
green box the encoder-decoder has never seen those transformation parameters. We note the impressive ability of the model to rotate out-of-plane
and to relight a 3D surface, when only given a 2D input and a pair of 3D rotation matrices. For unseen transformation parameters, notice that the
relighting is of perceptually decent quality, but that the geometric rotations degenerate in quality around the boundaries, such as the nose and chin.

We dub it the facial transformer. As basic design principles,
we avoid max-pooling, favoring strides, and use batch
normalization and leaky ReLUs after all layers, apart from
before and after the feature transform layer. For deconvolution
we upsample with nearest-neighbor interpolation followed
by regular convolution [40, 27]. Inspired by [53, 14] our
reconstruction loss is a convex combination of the structural
similarity index (SSIM) [48] and L1 loss. The L1 loss
encourages low-frequency shape information and accurate color
matching, and the SSIM encourages high-frequency details, for
instance, the shading of the ears. The loss is

Lface =
α

N

∑
j∈pixels

1−SSIM(xj,x̃j)

2
+(1−α)|xj−x̃j| (15)

whereN is number of pixels times 3 color channels. Similarly
to [53, 14], we use the blending coefficient of α= 0.85. We
optimize the loss using Adam [23], minibatch size 32, and initial
learning rate 10−4, dividing by 10 at iteration 30000 and 50000,
for a total of 60000 iterations. We train on a single TITAN X
Pascal GPU. 1/4-2 hours is sufficient for good results. Figure
6 shows the results of reoriented and relit faces from a held-out
validation set. The input is on the left and the transformed
outputs on the right. Top to bottom each row shows a different

Figure 7. Side-by-side output of DC-IGN [27] TOP and our facial
transformer BOTTOM. We have grayscaled our image for a fairer
comparison. Input on left, smoothly rotated faces on right. We
emphasize here that the goal of DC-IGN is different to ours, since they
learn unsupervised disentangling. We argue to use supervision when
the information is accessible. Our use of supervision is evident in that
we can quantitatively rotate our faces; whereas, DC-IGN cannot.

transformation, namely, lighting azimuth, lighting elevation,
rotation azimuth, and rotation elevation. Faces inside the large
green box span the transformation parameters seen at training
time, those outside were not seen. We note the reconstruction
fidelity and impressive ability to reorient out-of-plane rotations,
but zooming in shows that the reconstructions lack high-
frequency detail to be foolproof replicas of the input and the
overall face shape changes slightly. For unseen transformation
parameters, notice how faces just outside the green box are of
similar quality to inside, but large deviations from the training
set degrade. This is especially so for the geometric rotations,
where the boundary surfaces (nose and chin in particular) begin
to protrude from the face. Surprisingly, the shading of the
faces is realistic outside of the box. We also compare against
DC-IGN [27] in Figure 7. Our superior quality is partially
down to better training, but also to improved alignment in
feature-space, from supervised transformation information.
Interpretability of our features allows for more accurate control
over the azimuthal rotation. Feature stability In Figure 8 we
test the feature stability under transformations of the input. We
take an invariant representation of the data using L2-norms and
relative phases, then measure the cosine similarity (top) and
L2-distance (bottom) between a face and transformed versions
of itself (blue), and we also compute these metrics between
transformed versions of a face and a randomly selected face
of another identity. There is a clear separation between faces
of different identities for medium sized transformations, but this
breaks down for large values of the parameters for geometric
rotations. This is especially so, when the parameter values are
close to the limit of the training data, as would be expected.

Real faces For fun, we feed images of real faces into our
system, to recognize basic pose, shape, appearance, and lighting.
We take internet images, cropping out background and hair. The
system makes crude, but convincing enough matches to pose,
skin tone, and lighting. The bottom image is particularly hard
due to the side pose and lighting. This shows our system has
learned a generalizable representation of faces, despite training



on artificial data.

4.3. Voxelized ShapeNets: 3D Transformations

For this experiment, we use the ModelNet10 subset of the
ShapeNet dataset [52]. This consists of 3991 CAD models
from 10 object categories. Specifically, we use the voxelized
ModelNet10 provided by Maturana et al. [38], which is a
volumetric binary occupancy grid of size 32x32x32.

The encoder-decoder architecture is similar to the variational
auto-encoder architecture by Brock et al. [3], with the bottleneck
of 200 units with equivariance to rotations about the y-axis. We
also employ their variant of the binary cross entropy loss for
training:

Lbce =
∑
i∈voxels

−γtilog(oi)−(1−γ)(1−ti)log(1−oi) , (16)

where ti are the target values rescaled to [−1, 2], oi is the
output of the auto-encoder rescaled to [0.1,0.9999] and γ is
set to 0.98 to compensate for the sparseness of volumetric
data. We optimize the loss using Adam, minibatch size 16, and
learning rate of 10−4. See supplementary materials for details
on classification.

5. Conclusion
We have presented a simple framework to learn deep feature-

spaces, which disentangle both in-plane and out-of-plane
transformations into an interpretable feature space, that also
allows smooth interpolation. Our key innovation is the feature
transform layer, which can be applied to both convolutional and
fully-connected layers. The properties of the feature transform
layer give our networks equivariance properties, that can help
with generative and discriminative applications.
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Figure 8. Pairs of images are compared to each other in feature space
and similarity is measured using cosine similarity TOP and L2 distance
BOTTOM. Pairs of images with same identity shown in blue, and pairs
with different identities shown in red (10 each). Columns show left
to right: sweeping of azimuth, elevation, lighting azimuth, and lighting
elevation with all other parameters held. Dashed vertical lines show
range of transformation values seen at training time. Ideally cosine
similarity would be 1 everywhere for the blue lines, indicating perfect
transformation invariance. For dissimilar faces, the red curves would
be less than 1. We see that invariance to lighting is easy, even beyond
the range of training examples (see central box in Figure 6). Elevation
is particularly hard, so two features of the same person begin to differ
at large elevations.

Figure 9. We pass images of real faces through our system re-orienting
50◦ from the initial pose, while fixing all other transformation parame-
ters. Despite being trained on artificial data, the system is able to extract
basic pose, shape, appearance and illumination. The system struggles
to match shape properly, since these are far from the training set.

Limitations Our approach is supervised, so labeled
examples are needed to span the space of transformations,
preferably with little other variety in the images. Also, the
feature space needs to be smooth, precluding mirroring.

Acknowledgements Support is from Fight for Sight UK,
a Microsoft Research PhD Scholarship, NERC NE/P016677/1,
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Figure 10. We pass randomly rotated volume of 10 categories from the
test set (left) through our system re-orienting it by 0, 60, 120, 180, and
240 degrees from the initial pose. The system struggles to reconstruct
thin shapes properly, which is a common problem due to sparseness
of the volume occupancy.
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