
Instant 3D Photography
Implementation Details

Peter Hedman and Johannes Kopf

1 Supplementary Material

1.1 Warping into a central panorama

Once we have computed a 3D pose, and non-rigidly aligned each
depth map (see Section 4.2 in the main paper), we have a globally
consistent estimate for the 3D location of every pixel in our input
images. This makes it easy to warp the input images into a central
panoramic image. For each input image, we triangulate its depth
map into a grid mesh and render it with the normal rasterization
pipeline, letting the depth test select the front surface when multi-
ple points fall onto the same panorama pixel. One problem with
this simple approach is the long stretched triangles at depth discon-
tinuities, which might obscure other good content, and we do not
want to include them in the stitch. We resolve using the approach
described in Section 4.4 in the main paper, i.e. by first estimating
where the occlusion boundaries are and removing all triangles that
cross these boundaries.

1.2 Color harmonization

As described in the main paper (Section 4.4.3), we convert the im-
ages to the channel-decorrelated CIELAB color space, and then
process each channel independently. We solve a linear system to
compute global affine color-channel adjustments (a scale α and an
offset β) for each source image, such that the adjusted color values
in the overlapping regions agree as much as possible.

Formally, for each channel we minimize the sum

E = λpairwiseEpairwise +λregEreg (1)

of a pairwise color alignment term Epairwise (normalized by
λpairwise) and a regularization term Ereg (strength λreg = 0.33).

Pairwise term We compute our pairwise term as sum over every
pair of overlapping images A,B in the panorama,

Epairwise = ∑
A,B

∑
pi,p j∈C(A,B)

‖αA ∗ pi
A +βA−αB ∗ pi

b−βB‖2, (2)

where αA and αB are the scale terms for images A and B, βA and
βB are the offset terms, and C(A,B) is a regularly subsampled set
of corresponding pixels between the images A and B. To make the
system better conditioned, we do not include over-saturated pixels
(luminance > τsaturated = 0.98)

To make sure that the relative strength between the pairwise term
and the regularization term does not differ too much, we normalize
the pairwise term by the total number of correspondences. In other
words,

λpairwise =
1

∑A,B |C(A,B)|
. (3)

Regularization term Our regularization term,

Er = ∑
A
‖αa−1‖2 +‖βa‖2 (4)

encourages identity transformations and prevents the trivial solution
of scaling everything down to 0.

Figure 1: Texture atlas for the ANGKOR WAT MINIATURE scene.

Over-saturated pixels Since our geometry fusion prevents sat-
urated pixels at all costs, any remaining over-saturated regions in
the panorama are likely over-exposed in all of the input images. In
this case, applying color harmonization dulls bright highlights. We
preserve highlights by computing the final image as a soft blend be-
tween the original and the harmonized image, where the threshold
above (luminance > τsaturated) ensures that we only use the original
image for over-saturated highlights.

1.3 Feathering

We reduce visible seams in the final panorama with feathering, i.e.
instead of making a hard choice for the color cp of a pixel p, we a
weighted sum

cp =
∑wα

p cα
p

∑wα
p

(5)

of the colors associated with all available labels α .

Seams most often occur at 1) label boundaries 2) input image
boundaries. We account for both of these issues by computing the
label weights wα

p as the minimum of:

1. A soft label mask, i.e. a 50× 50 box-blurred version of the
label mask, and

2. a soft image mask, i.e. a function which linearly decreases
from 1 to 0 in regions that are close to image boundaries
(within 15% of the input image diagonal).

1.4 Mesh Processing

The meshes generated by the algorithm in Section 4.4 of the main
paper use a prohibitively large triangle count, since we have vertices
for every pixel in the stitched panorama.

The first step to reducing the size is to decompose the mesh into
charts that are not self-overlapping in the sense that they contain
multiple vertices that occupy the same pixel position, but at dif-
ferent depth. We build the charts using a flood-fill like algorithm
that propagates from a seed vertex as long as certain conditions are
satisfied (not self-overlapping, chart size thresholds, etc.) All the
charts are packed into a texture atlas (Figure 1).

Figure 2: Mesh simplification is performed in 2D on a per-chart
basis.

Next, we generate simplified meshes directly for each chart as de-
scribed below. The algorithm below operates in 2D in the texture
atlas chart domain. The final mesh is obtained by projecting the ver-
tices into world space according to their image position and depth.
We simplify the outline of the chart using the Ramer-Douglas-
Peucker algorithm [Ramer 1972], making sure that chart boundaries
that are shared between two charts are simplified in the same way.
Next, we add vertical “stud” edges that are spaced and subdivided
according to the desired tessellation level (the near-vertical edges
in Figure 2). Finally, we generate a mesh for the chart by first de-
composing it into monotone polygons, and then triangulating each
monotone polygon [Berg et al. 2008].

References

BERG, M. D., CHEONG, O., KREVELD, M. V., AND OVERMARS,
M. 2008. Computational Geometry: Algorithms and Appli-
cations, 3rd ed. ed. Springer-Verlag TELOS, Santa Clara, CA,
USA.

RAMER, U. 1972. An iterative procedure for the polygonal ap-
proximation of plane curves. Computer Graphics and Image
Processing 1, 3, 244–256.

