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Abstract

Translating or rotating an input image should not affect the
results of many computer vision tasks. Convolutional neural net-
works (CNNs) are already translation equivariant: input image
translations produce proportionate feature map translations.
This is not the case for rotations. Global rotation equivariance
is typically sought through data augmentation, but patch-wise
equivariance is more difficult. We present Harmonic Networks
or H-Nets, a CNN exhibiting equivariance to patch-wise trans-
lation and 360-rotation. We achieve this by replacing regular
CNN filters with circular harmonics, returning a maximal
response and orientation for every receptive field patch.

H-Nets use a rich, parameter-efficient and low computa-
tional complexity representation, and we show that deep feature
maps within the network encode complicated rotational invari-
ants. We demonstrate that our layers are general enough to be
used in conjunction with the latest architectures and techniques,
such as deep supervision and batch normalization. We also
achieve state-of-the-art classification on rotated-MNIST, and
competitive results on other benchmark challenges.

1. Introduction
We tackle the challenge of representing 360◦-rotations in con-

volutional neural networks (CNNs) [14]. Currently, the convolu-
tional layers of CNNs are constrained by design to map an image
to a feature vector, and for translated versions of the image to
map to proportionally-translated versions of the same feature
vector [16] (ignoring edge effects)—see Figure 1. However, un-
til now, if one rotates the input to a CNN, then the feature vectors
do not necessarily rotate in a meaningful or easy to predict man-
ner. The sought-after property, to directly relate input transfor-
mations to feature vector transformations, is called equivariance.

A special case of equivariance is invariance, which is when
feature vectors remain constant under all transformations of the
input. This can be a desirable property globally for a model,
such as a classifier, but we should be careful not to restrict all
intermediate levels of processing to be transformation invariant.
For example, consider trying to detect a deformable object,
such as a butterfly. The pose of a butterfly’s wings is limited

Figure 1. Patch-wise translation equivariance in CNNs arises from
translational weight tying, so that a translation π of the input image I,
leads to a corresponding translation ψ of the feature maps f(I), where
π 6=ψ in general, due to pooling effects. However, for rotations, CNNs
do not yet have a feature space transformation ψ ‘hard-baked’ into
their structure, and it is complicated to discover what ψ may be, if it
exists at all. Harmonic Networks have a hard-baked representation,
which allows for easier interpretation of feature maps—see Figure 3.

in range, and so there are only certain poses, which our detector
should normally see. A transformation invariant detector, good
at detecting wings, would detect them whether they were bigger,
further apart, rotated, etc., and it would encode all these cases
with the same representation. It would fail to notice nonsense
situations, however, such as a butterfly with wings rotated
past the usual range, because it has thrown that extra pose
information away. An equivariant detector, on the other hand,
does not dispose of local pose information, and so it hands on a
richer and more useful representation to downstream processes.

Equivariance conveys more information about an input to
downstream processes, it also constrains the space of possible
learned models to those that are valid under the rules of natural
image formation [24]. This makes learning more reliable and
helps with generalization. For instance, consider CNNs. The
key insight is that the statistics of natural images, embodied in
the correlations between pixels, are a) invariant to translation,
and b) highly localized. Thus features at every layer in a CNN
are computed on local receptive fields, where weights are shared
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across translated receptive fields. This weight-tying serves both
as a constraint on the translational structure of image statistics,
and as an effective technique to reduce the number of learnable
parameters—see Figure 1. In essence, translational equivariance
has been ‘baked’ into the architecture of existing CNN models.
We do the same for rotation and refer to it as hard-baking.

The current widely accepted practice to cope with rotation is
to train with aggressive data augmentation [11]. This certainly
improves generalization, but is not exact, fails to capture
local equivariances, and does not ensure equivariance at every
layer within a network. How to maintain the richness of
local rotation information, is what we present in this paper.
Another disadvantage of data augmentation is that it leads to the
so-called black-box problem, where there is a lack of feature
map interpretability. Indeed, close inspection of first-layer
weights in a CNN reveals that many of them are rotated,
scaled, and translated copies of one another [27]. Why waste
computation learning all of these redundant weights?

In this paper, we present Harmonic Networks, or H-Nets.
They design patch-wise 360◦-rotational equivariance into deep
image representations, by constraining the filters to the family of
circular harmonics. The circular harmonics are steerable filters
[5], which means that we can represent all rotated versions of
a filter, using just a finite, linear combination of steering bases.
This overcomes the issue of learning multiple filter copies in
CNNs, guarantees rotational equivariance, and produces feature
maps that transform predictably under input rotation.

2. Related Work

Multiple existing approaches seek to encode rotational
equivariance into CNNs. Many of these follow a broad
approach of introducing filter or feature map copies at different
rotations. None has dominated as standard practice.

Steerable filters At the root of H-Nets lies the property
of filter steerability [5]. Filters exhibiting steerability can be
constructed at any rotation as a finite, linear combination of base
filters. This removes the need to learn multiple filters at different
rotations, and has the bonus of constant memory requirements.
As such, H-Nets could be thought of as using an infinite bank
of rotated filter copies. A work, which combines steerable
filters with learning is [18]. They build shallow features from
steerable filters, which are fed into a kernel SVM for object
detection and rigid pose regression. H-Nets use the same filters
with an added rotation offset term, so that filters in different
layers can have orientation-selectivity relative to one another.

Hard-baked transformations in CNNs While H-Nets
hard-bake patch-wise 360◦-rotation into the feature represen-
tation, numerous related works have encoded equivariance to
discrete rotations. The following works can be grouped into

those, which encode global equivariance versus patch-wise
equivariance, and those which rotate filters versus feature maps.

[2] introduce equivariance to 90◦-rotations and dihedral
flips in CNNs by copying the transformed filters at different
rotation–flip combinations. They lay out a general mathematical
framework for this, based on Group Theory. [19] use an even
larger number of rotations for texture classification and [21]
also use many rotated handcrafted filter copies, opting not to
learn the filters. To achieve equivariance to a greater number
of rotations, these methods would need an infinite amount of
computation. H-Nets achieve equivariance to all rotations, but
with finite computation.

[4] feed in multiple rotated copies of the CNN input and
fuse the output predictions. [12] do the same for a broader
class of global image transformations, and propose a novel
per-pixel pooling technique for output fusion. As discussed,
these techniques lead to global equivariances only and do not
produce interpretable feature maps. [3] go one step further and
copy each feature map at four 90◦-rotations. They propose 4
different equivariance preserving feature map transformations.
Their CNN is similar to [2] in terms of what is being computed,
but rotating feature maps instead of filters. A downside of this
is that all inputs and feature maps have to be square; whereas,
we can use any sized input.

Learning generalized transformations Others have tried to
learn the transformations directly from the data. While this is
an appealing idea, as we have said, for certain transformations it
makes more sense to hard-bake these in for interpretability and
reliability. [20] construct a higher-order Boltzmann machine,
which learns tuples of transformed linear filters in input–output
pairs. Although powerful, they have only shown this to work on
shallow architectures. [6] introduced capsules, units of neurons
designed to mimic the action of cortical columns. Capsules are
designed to be invariant to complicated transformations of the
input. Their outputs are merged at the deepest layer, and so are
only invariant to global transformation. [17] present a method to
regress equivariant feature detectors using an objective, which
penalizes representations, which lie far from the equivariant
manifold. Again, this only encourages global equivariance;
although, this work could be adapted to encourage equivariance
at every layer of a deep pipeline.

3. Problem analysis
Many computer vision systems strive to be view indepen-

dent, such as object recognition, which is invariant to affine
transformations, or boundary detection, which is equivariant
to non-rigid deformations. H-Nets hard-bake 360◦-rotation
equivariance into their feature representation, by constraining
the convolutional filters of a CNN to be from the family of
circular harmonics. Below, we outline the formal definition of
equivariance (Section 3.1), how the circular harmonics exhibit
rotational equivariance (Section 3.2) and some properties of
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Figure 2. Real and imaginary parts of the complex Gaussian filter
Wm(r,φ

′;e−r
2

,0)=e−r
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eimφ, for some rotation orders. As a simple
example, we have setR(r)=e−r

2

and β=0, but in general we learn
these quantities. Cross-correlation, of a feature map of rotation order
n with one of these filters of rotation orderm, results in a feature map
of rotation order m+n. Note the negative rotation order filters have
flipped imaginary parts compared to the positive orders.

the circular harmonics, which we must heed for successful
integration into the CNN framework (Section 3.2).

Continuous domain feature maps In deep learning we use
feature maps, which live in a discrete domain. We shall instead
use continuous spaces, because the analysis is easier. Later on
in Section 4.2 we shall demonstrate how to convert back to the
discrete domain for practical implementation, but for now we
work entirely in continuous Euclidean space.

3.1. Equivariance

Equivariance is a useful property to have because transforma-
tions π of the input produce predictable transformationsψ of the
features, which are interpretable and can make learning easier.
Formally, we say that feature mapping f :X→Y is equivariant
to a group of transformations if we can associate every
transformation π∈Π of the input x∈X with a transformation
ψ∈Ψ of the features; that is,

ψ[f(x)]=f(π[x]). (1)

This means that the order, in which we apply the feature
mapping and the transformation is unimportant—they commute.
An example is depicted in Figure 1, which shows that in CNNs
the order of application of integer pixel-translations and the
feature map are interchangeable. An important point of note
is that π 6=ψ in general, so if we seek for Π to be rotations in
the image domain, we do not require to find the set of f , such
that Ψ “looks like” a rotation in feature space, rather we are
searching for the set of f , such that there exists an equivalent
class of transformations Ψ in feature space. A special case of
equivariance is invariance, when Ψ={I}, the identity.

3.2. The Complex Circular Harmonics

With data augmentation CNNs may learn some rotation
equivariance, but this is difficult to quantify [16]. H-Nets take
the simpler approach of hard-baking this structure in. If f is

K K

Figure 3. DOWN: Cross-correlation of the input patch with Wm yields
a scalar complex-valued response. ACROSS-THEN-DOWN: Cross-
correlation with the θ-rotated image yields another complex-valued
response. BOTTOM: We transform from the unrotated response to the
rotated response, through multiplication by eimθ.

the feature mapping of a standard convolutional layer, then
360◦-rotational equivariance can be hard-baked in by restricting
the filters to be of the from the circular harmonic family (proof
in Supplementary Material)

Wm(r,φ;R,β)=R(r)ei(mφ+β). (2)

Here r,φ are the spatial coordinates of image/feature maps,
expressed in polar form,m∈Z is known as the rotation order,
R : R+ → R is a function, called the radial profile, which
controls the overall shape of the filter, and β ∈ [0,2π) is a
phase offset term, which gives the filter orientation-selectivity.
During training, we learn the radial profile and phase offset
terms. Examples of the real component of Wm for a ‘Gaussian
envelope’ and different rotation orders are shown in Figure
2. Since we are dealing with complex-valued filters, all filter
responses are complex-valued, and we assume from now on that
the reader understands that all feature maps are complex-valued,
unless otherwise specified.

Rotational Equivariance of the Circular Harmonics
Some deep learning libraries implement cross-correlation ?
rather than convolution ∗, and since the understanding is slightly
easier to follow, we consider correlation below1. Consider
correlating a circular harmonic of orderm with a rotated image
patch. We assume that the image patch is only able to rotate lo-
cally about the origin of the filter. This means that the response
of the cross-correlation is only a scalar function of input image
patch rotation θ. Furthermore this response is complex-valued.

1Strictly, cross-correlation with complex functions requires that one of the
arguments is conjugated, but we do not do this in our model/implementation.

3



Using the notation from Equation 1, and recalling that
we are working in polar coordinates r,φ, counter-clockwise
rotation of an image F(r,φ) about the origin by an angle θ
is F(r,φ−θ), so the rotation transformation can be written as
F(r,πθ[φ])= F(r,φ−θ). It is a well-known result that [18, 5]
(proof in Supplementary Material)

[Wm?F(r,πθ[φ])](θ)=eimθ[Wm?F(r,φ)](θ), (3)

where we have written Wm in place of Wm(r,φ;R,β) for
brevity. We see that the response to a θ-rotated image F(r,πθ[φ])
with a circular harmonic of orderm is equivalent to the cross-
correlation of the unrotated image F(r,φ) with the harmonic,
followed by multiplication by eimθ. While the rotation is done in
input space, multiplication by eimθ is performed in feature space,
and so, using the notation from Equation 1, ψθm[•] = eimθ ·•.
This process is shown in Figure 3. Note that we have included a
subscriptm on the feature space transformation. This is impor-
tant, because the kind of feature space transformation we apply
is dependent on the rotation order of the harmonic. Because
the phase of the response rotates with the input at frequency
m, we say that the response is an m-equivariant feature map.
By thinking of an input image as a complex-valued feature map
with zero imaginary part, we could think of it as 0-equivariant.

The use of rotation orders is central to how we define
the equivariance properties of the H-Net, and their use is
how we are able to define the predictable transformation
properties of feature maps under input rotations. In particular,
rotation orderm=0 defines local invariance because, denoting
fm = [Wm ?F(r,φ)], then ψθ0[fm] = ei·0θ · fm = fm, which
is independent of θ, and m= 1 defines local equivariance to
rotation because ψθ1[fm]=eiθfm. As the input rotates eiθfm is
a complex-valued number of constant magnitude fm, spinning
round with a phase equal to θ. Naturally, we are not constrained
to using rotation orders 0 or 1 only, and we make use of higher
and negative orders in our work. Note how we have been able
to obtain these properties for any angle θ, with just a single filter,
albeit with two components. On a practical note, it is worth
mentioning, that complex cross-correlation can be implemented
efficiently using 4 real cross-correlations

WRe
m?FRe−WIm

m?FIm︸ ︷︷ ︸
real response

+iWRe
m?FIm+WIm

m?FRe)︸ ︷︷ ︸
imaginary response

. (4)

So circular harmonics can be implemented in current deep
learning frameworks, with minor engineering.

Arithmetic and the Equivariance Condition Further
important properties of the circular harmonics, which are
proven in the Supplementary Material, are: 1) Chained cross-
correlation of rotation ordersm1 andm2 lead to a new response
with rotation order m1 + m2. 2) Point-wise nonlinearities
h :C→C, acting solely on the magnitudes maintain rotational
equivariance, so we can interleave cross-correlations with

Figure 4. An example of a 2 hidden layer H-Net with m=0 output,
input–output left-to-right. Each horizontal stream represents a series of
feature maps (circles) of constant rotation order. The edges represent
cross-correlations and are numbered with the rotation order of the
corresponding filter. The sum of rotation orders along any path of
consecutive edges through the network must equalM=0, to maintain
disentanglement of rotation orders.

typical CNN nonlinearities adapted to the complex domain. 3)
The summation of two responses of the same orderm remains
of order m. Thus to construct a CNN where the output is
M-equivariant to the input rotation, we require that the sum
of rotation orders along any path equalsM , so

N∑
i=1

mi=M. (5)

This is the fundamental condition underpinning the equivariance
properties of H-Net, so we call it the equivariance condition.

We note here that for our purposes, our filter W−m=Wm

(the complex conjugate), which saves on parameters, but this
does not necessarily imply conjugacy of the responses unless
F is real, which is only true at the input.

4. Method
We have considered the 360◦-rotational equivariance of

feature maps arising from cross-correlation with the circular
harmonics, and we determined that the rotation orders of
chained cross-correlations sum. Next, we use these results
to construct a deep architecture, which can leverage the
equivariance properties of circular harmonics.

4.1. Harmonic Networks

The rotation order of feature maps and filters sum upon cross-
correlation, so to achieve a given rotation order at the output, we
have to obey the equivariance condition. In fact, at every feature
map in the network, the equivariance condition must be met,
otherwise, it should be possible to arrive at the same feature map
along two different paths, whose summed rotation orders are dif-
ferent. The problem with this is that we are combining complex
features, with phases, which rotate at different frequencies, and
so we say that the responses become entangled. The resultant
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Figure 5. H-Nets operate in a continuous spatial domain, but we can
implement them on pixel-domain data because sampling and cross-
correlation commute. The schematic shows an example of a layer of an
H-Net (magnitudes only). The solid arrows follow the path of the im-
plementation, while the dashed arrows follow the possible alternative,
which is easier to analyze, but computationally infeasible. The intro-
duction of the sampling defines centers of equivariance at pixel centers
(yellow dots), about which a feature map is rotationally equivariant.

feature map is no longer equivariant to a single rotation order,
which makes it very difficult to work with. We resolve this by
enforcing the equivariance condition at every feature map.

Our solution is to create separate streams of constant rota-
tion order running through the network—see Figure 4. These
streams contain multiple layers of feature maps, separated by
rotation order zero cross-correlations and nonlinearities. Mov-
ing between streams, we use cross-correlations of rotation order
equal to the difference between those two streams. It is very easy
to check that the equivariance condition holds in these networks.

When multiple responses converge at a feature map, we
have multiple choices of how to combine them. We could stack
them, we could pool across them, or we could sum them [3].
To save on memory, we chose to sum responses of the same
rotation order

Yp=
∑

m,n:m+n=p

Wm?Fn. (6)

Yp is then fed into the next layer. Usually in our experiments,
we use streams of orders 0 and 1, which we found to work well
and is justified by the fact that CNN filters tend to contain very
little high frequency information [8].

Above, we see that the structure of the Harmonic Network
is very simple. We replaced regular CNN filters with radially
reweighted and phase shifted circular harmonics. This causes
each filter response to be equivariant to input rotations with
orderm. To prevent responses of different rotation order from
entangling upon summation, we separated filter responses into
streams of equal rotation order.

Complex nonlinearities Between cross-correlations, we use
complex nonlinearities, which act on the magnitudes of the

=

R(r)

r

+ ++++x xxxx x

Figure 6. We map the radial profile onto the weights, as a linear
combination of masking matrices Φri and a radial profile tap.

complex feature maps only, to preserve rotational equivariance.
An example is a complex version of the ReLU

C-ReLUb(Xeiφ)=ReLU(X+b)eiφ. (7)

We can provide similar analogues for other nonlinearities and
for Batch Normalization [7], which we use in our experiments.

We have thus far presented the Harmonic Network. Each
layer is a collection of feature maps of different rotation orders,
which transform predictably under rotation of the input to the net-
work and the 360◦-rotation equivariance is achieved with finite
computation. Next we show how to implement this in practice.

4.2. Implementation: Discrete cross-correlations

Until now, we have operated on a domain with continuous
spatial dimensions Ω =R×R×{1,k`}. However, the H-Net
needs to operate on real-world images, which are sampled on a
2D-grid. Conveniently we can use the regular CNN architecture
without any problems. This works on the fact that the order
of sampling and cross-correlation is interchangeable [5]; they
commute, so either we correlate in continuous space, then
downsample, or downsample then correlate in the discrete space.
Only the latter option is computationally tractable. Furthermore,
since point-wise nonlinearities and sampling also commute,
the entire H-Net, seen as a deep feature-mapping, commutes
with sampling. This could allow us to implement the H-Net
on non-regular grids; although, we did not explore this.

Viewing cross-correlation on discrete domains sheds some
insight into how the equivariance properties behave. In Figure
5, we see that the sampling strategy introduces multiple
origins, one for each feature map patch. We call these, centers
of equivariance, because a feature map will exhibit local
rotation equivariance about each of these points. If we move
to using more exotic sampling strategies, such as strided cross-
correlation or average pooling, then the centers of equivariance
are ablated or shifted. If we were to use max-pooling, then
the center of equivariance would be a complicated nonlinear
function of the input image and harmonic weights. For this
reason we have not used max-pooling in our experiments.

Complex cross-correlations We implement a grid-sampled
version of the filters Wm, using a sampling matrix Φ. The
elements of Φ denote the angle of the corresponding elements
with respect to a chosen origin, which we define to be the center
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Figure 7. Networks used in our experiments. LEFT: MNIST networks,
as per [2]. RIGHT deeply-supervised networks (DSN) [15] for
boundary segmentation, as per [26]. Red boxes denote feature maps.
Blue boxes are pooling (max for CNNs and average for H-Nets). Green
boxes are side feature maps as per [26]; these are connected to the
DSN with dashed lines for ease of viewing. All main cross-correlations
are 3×3, unless otherwise stated in the experiments section.

of the filter. To map radial profile weights R(ri) at radii ri to
the filter, we separate out each ring of elements equidistant
from the origin in Φ, denoting each matrix as Φri (see Figure
6), and weight each ring by a radial profile element. The phase
offset β can be implemented by noting that

I∑
i=1

R(ri)e
i(mΦri

+β)=

I∑
i=1

R(ri)

[
Icosβ −Isinβ
Isinβ Icosβ

][
cosmΦri

isinmΦri

]
(8)

where the complex exponential and trigonometric terms are
element-wise, and I is the identity matrix. This is just a
reweighting of the ring elements. In full generality, we could
also use a per-radius phase βri , which would allow for spiralic
left- and right-handed features, but we did not investigate this.

4.3. Computational complexity

We have increased the computational complexity of
cross-correlation, but also increased the representative power
of the network. Here we analyze the computational complexity
in terms of number of multiplications. In the standard
cross-correlation, for an input of size h ·w ·iZ, (height, width,
input channels) and filters of size k·k·oZ (height, width, output
channels), the number of multiplications to form a feature map
of the same size as the input is M(Z) = hwk2iZoZ. In the
H-Net, we have f rotation orders on the input and r rotation
orders on the output, so perform fr complex cross-correlations.
Each complex cross-correlation can be formed from 4 real cross-
correlations, so the number of multiplications is 4M(H)fr,
where iH and oH are the number of input and output channels,
respectively. Thus for similar levels of computation we equate
the two to yield M(Z) = 4M(H)fr. Rearranging; setting

Method Test error (%) # params
SVM [13] 11.11 -
Transformation RBM [25] 4.2 -
Conv-RBM [22] 3.98 -
CNN [2] 5.03 22k
CNN [2] + data aug* 3.50 22k
P4CNN rotation pooling [2] 3.21 25k
P4CNN [2] 2.28 25k
H-Net (Ours) 1.69 33k

Table 1. Results. Our model sets a new state-of-the-art on the
rotated MNIST dataset, reducing the test error by 26%. * Our
reimplementation

iH=oH, iZ=oZ and f=r; and taking the square root of both
sides, we arrive at a simple rule of thumb for network design,

iZ=2fiH. (9)

For example, if we want to build an H-Net with similar
computation to a regular CNN with 64 channels per layer, then
if we use 2 rotation orders m ∈ {0,1}, then the number of
H-Net channels is 64/(2·2)=16.

5. Experiments
We validate our rotation equivariant formulation below,

performing some introspective investigations, and measuring
against relevant baselines for classification on the rotated-
MNIST dataset [13] and boundary detection on the Berkeley
Segmentation Dataset [1]. We selected our baselines as
representative examples of the current state-of-the-art and to
demonstrate that H-Nets can be used on different architectures
for different tasks. The networks we used are in Figure 7.

5.1. Benchmarks

Here we compare H-Nets for classification and boundary
detection. Classification is a typical rotation invariant task, and
should suit H-Nets very well. In contrast, boundary detection is
a rotation equivariant task. The key to the success of the H-Net
is that it can achieve global equivariance, without sacrificing
local equivariance of features.

MNIST Of course, this is a small dataset, with simple visual
structures, but it is a good indication of how introducing the
right equivariances into CNNs can aid inference. We investigate
classification on the rotated MNIST dataset (new version) [13]
as a baseline. This has 10000 training images, 2000 validation
images, and 50000 test images. The 360◦-rotations and small
training set size make this a difficult task for classical CNNs.
We compare against a collection of previous state-of-the-art
papers and [2], who build a deep CNN with filter copies at
90◦-rotations. We try to mimic their network architecture for
H-Nets as best as we can, using 2 rotation order streams with
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Method ODS OIS # params
Xie et al., [26]* 0.64 0.65 2346k
Kivinen et al., [10] 0.702 0.715 -
H-Net (Ours) 0.726 0.742 116k

Table 2. Our model beats the baselines when testing on the Berkeley
Segmentation Dataset (BSD500) [1]. No pretraining was used for any
models. *Our implementation.

m∈ {0,1} through to the deepest layer, and complex-valued
versions of ReLU nonlinearities and Batch Normalization (see
Method). We also replace max-pooling with mean-pooling
layers, as shown in Figure 7. We perform stochastic gradient
descent on a cross-entropy loss using Adam [9] and an adap-
tive learning rate, which we divide by 10 if there has been no
improvement in validation accuracy in the last 10 epochs. We
train multiple models with randomly chosen hyperparameters,
and report the test error of the model that performed best on the
validation set, training on a combined training and validation set
Table 1 lists our results. This model actually has 33k params,
which is about 50% larger than the standard CNN and [2], which
have 22k. This is because it uses 5×5 convolutions instead of
3×3. Interestingly, it does not overfit on such a small dataset
and it still outperforms the standard CNN trained with rotation
augmentations, which we do not use. We set the new state-of-
the-art, with a 26% improvement on the previous best model.

Deep Boundary Detection Boundary detection is equivari-
ant to non-rigid transformations; although edge presence is
locally invariant to orientation. The current state-of-the-art
depends on finetuning ImageNet-pretrained networks to regress
boundary probabilities on a per-patch basis. To demonstrate
that hard-baked rotation equivariance serves as a strong gen-
eralization tool, we compared against a previous state-of-the-art
architecture [26], without pretraining. We tried to mimic [26]
as closely as possible, with differences highlighted in Figure
7. The main difference is that we divide the number of all
feature maps by 2, for faster, more stable training. They use
a VGG network [23] extended with deeply supervised network
(DSN) [15] side-connections. These are 1× 1-convolutions,
which perform weighted averages across all relevant feature
maps, resized to match the input. A binary cross-entropy loss
is applied to each side connection, to stabilize learning. A final
‘fusion’ layer is created by taking a weighted linear combination
of the side-connections, this is the final output. We adapt
side-connections to H-Nets, by using the complex magnitude
of feature maps before taking a weighted average. This means
that the resultant boundary predictions are locally invariant
to rotation. We added a small sparsity regularizer to our cost
function, because we found it improved results slightly. We call
the Harmonic variant of the DSN, an H-DSN.

We also compared with [10], who use a mean-and-
covariance-RBM. There technique has five main contributions:
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Figure 8. Randomly selected filters and phase histograms from the
BSDS500 trained H-DSN. Filter are aligned at β=0; and the oriented
circles represent phase. We see few filter copies and no blank filters, as
usually seen in CNNs. We also see a balanced distribution over phases,
indicating that boundaries, and their deep feature representations, are
uniformly distributed in orientation.

1) zero-mean, unit variance normalization of inputs, 2) sparsity
regularization of hidden units, 3) averaged ground truth edge
annotations, 4) average outputs to 16 input rotations, 5) non-
maximum suppression of results by the Canny method. We
perform the first 2 methods, but leave the last 3 alone. In par-
ticular, they do not pretrain on ImageNet, and attempt some
kind of rotation averaging for global equivariance, so are a good
baseline to measure against. We tested on the Berkeley Seg-
mentation Dataset (BSD500) [1]. As shown in Table 2 for non-
pretrained models, H-Nets deliver superior performance over
current state-of-the-art architectures, including [10], who also
encode rotation equivariance. Most noticeable of all is that we
only use 5% of the params of [26], showing how by restricting
the search space of learnable models through hard-baking local
rotation equivariance, we need not learn so many parameters.

5.2. Model Insight

Here we investigate some of the properties of the H-Net
implementation, making sure that the motivations behind H-Net
design are achieved by the implementation.

Filter Visualization The real parts of the filters, from the
first layer of the boundary-detection-trained H-Net, are shown
in Figure 8. They are aligned at zero phase (β = 0) for ease
of viewing. Since the network is trained on zero-mean, unit
variance, normalized color images, the weights do not have the
natural colors we would see in real-world images. Nonetheless,
there is useful information we can glean from inspecting these.
Most 1st layer filters detect color boundaries, there are no blank
filters as one usually sees in CNNs, and there are few reoriented
copies. We also see from the phase histograms that all phases
are utilized by filters throughout the network, indicating full use
of the phase information. This is interesting, because it means
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Figure 9. Data ablation study. On the rotated MNIST dataset, we
experiment with test accuracy for varying sizes of the training set. We
normalize the maximum test accuracy of each method to 1, for direct
comparison of the falloff with training size. Clearly H-Nets are more
data-efficient than regular CNNs, which need more data to discover
rotational equivariance unaided.

that the model’s parameters are being used fully, with low
redundancy, which we surmise comes from easier optimization
on the equivariant manifold.

Data ablation H-Nets are parameter-efficient, but here we
investigate whether they are data-efficient. It is no secret that
CNNs are massively data-hungry. Krizhevsky’s landmark paper
[11] in 2012 used 60 million parameters, trained on 1.2 million
256×256 RGB images quantized to 256 bits and split between
1000 classes, for a total of 10 bits of information per weight.
Even this vast amount of data was insufficient for training, and
aggressive data augmentation was needed to improve results.
We ran an experiment on the rotated MNIST dataset to show
that since we need not learn rotation equivariance, we require
less data than competing methods, which is indeed the case
(see Figure 9). Interestingly, and predictably, regular CNNs
trained with data augmentation still perform worse than H-Nets,
because they only learn global invariance to rotation, rather than
local equivariances at each layer.

Figure 10. Feature maps from the MNIST network. The arrows display
phase, and the colors display magnitude information (jet color scheme).
There are diverse features encoding edges, corners, whole objects,
negative spaces, and outlines.

Figure 11. View best in color. Orientated feature maps for the H-DSN.
The color wheel shows orientation coding. Note that between layers
boundary orientations are colored differently because each feature
has a different β. This visualization demonstrates the consistency
of orientation within a feature map and across multiple layers. The
images are taken from layers 2, 4, 6, 8, and 10 in a clockwise order
from largest to smallest.

Feature maps We visualize feature maps in the lower layers
of an MNIST trained H-Net (see Figure 10). For given input,
we see the feature maps encode very complicated structures.
Left to right, we see the H-Net learns to detect edges, corners,
object presence, negative space, and outlines of objects. We
perform this for the BSD500 trained H-DSN (see Figure 11).
It showsequivariance is preserved through to the deepest feature
maps. It also highlights the compact representation of feature
presence and pose, which regular CNNs cannot do.

6. Conclusions
We presented a convolutional neural network that is locally

equivariant to patch-wise translation and, for the first time, to
continuous 360◦-rotation. We achieved this by restricting the fil-
ters to circular harmonics, essentially hard-baking rotation into
the architecture. This can be implanted onto other architectures
too. The use of circular harmonics pays dividends in that we
receive higher representational power using fewer parameters.
This leads to good generalization, even with less (or less aug-
mented) training data. The only disadvantage we’ve seen so far
is the higher per-filter computational cost, but our guidance for
network design balances that cost against the more expressive
representation. The better interpretability of the feature maps is a
bonus, because we know how they transform under input image
rotations. We applied our network to the problem of classifying
rotated-MNIST, setting a new state-of-the-art. We also applied
our network to boundary detection, again achieving state-of-the-
art results, for non-pretrained networks. We have shown that
360◦-rotational equivariance is both possible and useful.

Future work Extension of this work could involve hard-
baking yet more transformations into the equivariance properties
of the Harmonic Network, possibly extending to 3D. This
will allow yet more expressibility in network representations,
extending the benefits we have seen afforded by rotation
equivariance to a larger class of models and applications.
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