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1. Blur Discretization and Blur Space Segmentation
1.1. Discretization

In the main paper, P and E are held to discrete values. P1−3 are [0.005, 0.001, 0.00005], where a lower value for P , P3

for example, gives a more rectilinear blur. Since there are underlying random factors initialized for every blur kernel that are
only influenced by P , some overlap exists between the type of blur kernels produced across different P s. Exposures E1−5

are [1/25, 1/10, 1/5, 1/2, 1]. Note that for blur trained networks, we don’t resize images to a canonical size before blurring;
this acts as a mild regularizer and helps creates specialists that are flexible across a range of blur levels.

All mAP@50 scores are reported on the COCO minival set (5000 images). We use a fixed seed for every evaluation when
generating blur kernels.

While our proposed model was trained with those discrete blur settings, the space of camera-induced blur is not so neatly
quantized. To explore a larger cross-section of the continuous blur space, we evaluated a sweep across a random selection
of exposures (horizontal axis) and blur types (vertical axis), comparing the original network against our Specialized by
Exposure Expanded Labels. Each marker plotted in Fig. 1 is an evaluation on 2000 images from the COCO minival set. It
visually summarizes that for sharp and barely-blurred images, our approach is negligibly better than the original model. But
for essentially all other settings of induced motion blur, our model does measurably better.

Figure 1. Comparison of the original model (ResNet50FPN trained on COCO) and our best model evaluated on expanded labels across a
random selection of P and E values. Each marker is a representation of the accuracy (mAP@50) on an evaluation of 2000 images from
the COCO minival. For the first two graphs (left to right), the greener the marker the closer it is to an mAP@50 of 61%. The redder it
is, the closer it is to an mAP@50 of 0%. For the third graph, we visualize the difference between both networks; the greener the marker
the larger the diffrence in mAP@50 between our best solution and the original network. The bluer the marker the less the difference is in
accuracy. Naturally, at lower exposures, the original network holds up well, but as the exposure is ramped up, and particularly with more
rectilinear blur (low P value), the difference is much larger.
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Figure 2. Standard augmented specialized networks performance across different blur types and exposures, evaluated on standard labels.

Figure 3. Expanded augmented specialized networks performance across different blur types and exposures, evaluated on expanded labels.
Note how here and in Fig. 2, the each blur type specialized network tends to be better than its peers, especially at higher exposures. The
high exposure HE networks outperform the rest at their respective blur type specialty at high exposures.

1.2. Segmenting Blur Space: By Type vs. By Exposure

All general augmented networks (non-specialized) are trained with a mixture of sharp COCO images (10%) and a random
selection of blurry images across P1−3 and E1−5 (90%). Spec by Type networks are also trained on the same ratio, but
are fixed to a specific P . The low exposure network in Spec by Exposure is trained on 25% sharp images and 75% blurry
images from P1−3 and E1−3; the three others are trained on 100% blurry images exclusively from a a specific P and E4,5.
The performance of these networks separately across blur levels is displayed in Fig. 2 and Fig. 3.

1.3. Blur Estimators

We use two flavors of a ResNet18 classification network, one for each type of bag of specialists. For Spec By Type, the
blur estimator is trained to classify an image as belonging to one of 16 classes, clean or one of {P1−3 × E1−5}; it achieves
84% accuracy. For Spec by Exp, images are classified to one of four classes - clean and exposures in {E1−3}, {P1 × E4,5},
{P2 × E4,5}, or {P3 × E4,5}; this flavor achieves 93% accuracy.

Blur estimators are trained for 12 epochs with an initial learning rate of 0.02 (20 images) attenuated by a factor of 10 for
each epoch in [3, 7, 10]. Unlike blur augmentation for detection, we resize images to a canonical size of 1333× 800 before
blurring.

2. Zero Centering Ablation
We show how kernel/label centering improves training and test-time accuracy. The main paper features results of evaluat-

ing on centered labels that match the barycenter of the kernel. In Fig. 4 we evaluate on non-aligned kernels and labels as well.
Training and evaluating on centered kernels aligned to detection labels produces better scores, likely because the typically
non-centered kernels are offset relative to the training bounding boxes. The Non-Centered model achieves the same scores



when evaluated with and without centered kernels, indicating that the network has likely learned to find a vague localization
and misses boxes altogether that it ought to have detected.

Figure 4. Comparison of different training and evaluation strategies. Results are averaged across the blur types P1−3. Evaluating and
training on kernels aligned to detection labels (Standard Augmentation and centered labels) scores best.

3. Expanded Labels and What the Network Outputs
Fig. 5 shows an example image with motion blur, and the output from both the Standard Augmented and the Expanded

Augmented networks. The Expanded augmented network learns to predict bounding boxes that capture the superset of
all spatial locations an object occupied during an exposure. This seems to be an easier objective for the network to learn.
While one could argue that downstream tasks may prefer original-sized bounding boxes as shown computed by the Standard
Augmented model, there is no good compromise there: the middle of the blurred object could be a “stale” image-space
location compared to where the object is at the end of the exposure, in, e.g. a tracking-by-detection task. In qualitative
examples, the expanded networks manage to detect bounding boxes that are otherwise missed by their standard counterparts,
see Fig.5.

Figure 5. Left: Groundtruth image with COCO labels. Middle: Network output from the Standard Augment network. Right: Network
output from the Expanded Augment network. Expanded augment networks learn to output boxes that represent the superset of all locations
an object has been at during an exposure.

4. Minibatch Normalization as Schneider et al. [6]
In this late-breaking NeurIPS 2020 paper, results are reported for minibatch normalization on networks already trained

with augmentation for blurry images. As per their algorithm, we perform minibatch normalization by finding the statistics of



the activations of an input example, µ and σ, and computing a weighted sum with the training statistics using N = 16 and
n = 1. This is done progressively in one forward pass. In Fig. 6, results are reported for the performance of the original model
with this modification. We also experimented with finding an accurate estimate of the target distribution for blurry images
by running a large portion of the train set under a specific type of blur and exposure as many times as there are batchnorm
layers in the network with n = 2048, and using that as normalization statistics, but this did not constitute an improvement.
Despite the appeal of this test-time approach, object detection was not substantially better off with it, so we excluded it from
our final model.

Figure 6. Comparison of using minibatch normalization on both the original network and blur augmented networks. For only this graph:
solid lines are evaluation runs on expanded labels and dashed lines are evaluated on standard labels; the exception here is the original model
which is evaluated on expanded labels. Results are averaged across P1−3.

5. Defocus And Motion Blur
Our models are more resilient to camera defocus blur than the original. P1 is close to simulating defocus blur since

the camera trajectory loops in place. We Gaussian blur each motion-blur kernel with a random σ across all blur types and
exposures. We report results in Fig. 7.

6. Real-World Blur Datasets
We evaluate our models on on two pseudo-real blur datasets, GOPRO [4] and REDS [3], and a real-world blur dataset,

RealBlur [?], obtained using shutter tied cameras. These datasets don’t have box annotations, so we utilize a state-of-the-art
high accuracy detector, DetectoRS [5], to obtain pseudo-groundtruth bounding-boxes for evaluation. For evaluating expanded
bounding boxes, we generate our own GOPRO testset using grountruth sharp frames and use flow computed using [7] for
bounding-box expansion.

We stick to the canonical train and test sets when available. However when either the train and sets combined don’t contain
enough images for reliable evaluation or when we need to estimate flow on source high-frame rate images, we synthesize our
own set of blurry images using sharp images from the datasets.

We perform standard evaluation on RealBlur, GOPRO, and REDS. RealBlur sharp and blurry frames are naturally aligned
during capture and the alignment is further refined in the post process described in the paper [?]. GOPRO and REDS report
a sharp frame as one in the middle of the window to synthesize a blurry frame. Although this doesn’t necessarily equate to
centering the blur kernel since movement can be asymmetric on either side of the sharp frame, we use this as our “standard”
evaluation as it’s the closest approximation given the data.

For RealBlur, we use both train and test sets (4,738 pairs) and set to the confidence threshold on pseudo-groundtruth boxes
to 0.6. For REDS, we sample 5,000 frames from the train and validation, set the confidence threshold to 0.4, and allow only a



Figure 7. Models evaluated on motion blur with and without defocusing. E is motion blur extent; each point averages blur types P1−3.
Defocus is simulated by Gaussian blurring each motion-blur kernel with a random σ. Defocus hurts, but our model still performs well,
especially compared to no-centering and the original network.

maximum of 20 images without bounding boxes. For GOPRO, we use the combination of the train and test sets (3214 pairs)
and set the confidence threshold to 0.4.

For expanded evaluation, we synthesize 5,442 blurry GOPRO frames using the method and window size limits outlined
in [4], and we set the confidence threshold on pseudo-groundtruth bounding boxes to 0.6. We omit empty scenes with
no COCO object classes, namely GOPR0374_11_00, GOPR0374_11_01, GOPR0374_11_02, GOPR0374_11_03,
GOPR0857_11_00, GOPR0868_11_00, GOPR0868_11_02, GOPR0871_11_00, and GOPR0396_11_00. During
this process, we note the sharp frames used to synthesize blurry frames and obtain low-resolution flow fields using RAFT [7]
to estimate where objects have moved during the exposure. We use low-resolution as apposed to the refined maps to avoid
artefacts at object boundaries. We advect each bounding box corner using the estimated flow fields both forwards and
backwards on either side of the sharp frame, stopping at the assigned blur window size. We then assign the bounding box
corners to the super-set of both the original points and the advected points. These new boxes are estimates of the super-set
location of where an object has been in an exposure, and are used during expanded evaluation.

7. Qualitative Results
You can find a video with qualitative results and a visual explanation of our method visual.cs.ucl.ac.uk/pubs/

handlingMotionBlur/.
There, we show real world examples where our model, based on the two proposed remedies, manages to detect objects in

many places where the original model fails, especially when the ratio of camera motion to object size is high. Following on
from the quantitative experiments in the paper and here, we synthesize blurry COCO images (in the same spirit as [2, 1]) and
show sample results in the video.

8. Results Tables
Table 1 and Table 2 contain the raw results used to generate Fig. 5 and Fig. 6 in the paper. Table 3 and Table 4 show raw

numbers for generating Fig. 2 and Fig. 3.
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Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Deblur then Original 55.50 49.18 42.13 30.31 12.72 6.26
Deblur then Standard Augmented 53.90 51.47 48.44 40.35 23.85 15.86
Squint 55.65 54.30 51.76 46.21 37.24 31.39
AugMix (Non Expanded) 59.34 53.13 38.07 20.70 13.63 8.21
AugMix PixelLevel 58.93 51.68 32.10 14.84 9.12 4.48
Original w/ MiniBatch, N = 16, n = 1 52.10 46.53 31.25 16.10 8.86 4.40
Standard Augmented w/ MiniBatch, N = 16, n = 1 48.60 47.70 44.25 37.79 27.84 20.92
Non-Centered Augmented 55.91 53.80 49.22 40.77 31.00 25.66
Standard Augmented w/ NonSpatial Augmix 55.77 54.15 51.95 46.53 38.41 31.67
Standard Augmented 56.51 54.93 52.44 46.85 37.56 31.37
Spec By Type 56.50 55.39 52.33 47.78 39.81 33.84
Spec By Exposure (Ours) 58.55 56.57 53.83 47.74 40.21 35.93
Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Deblur then Original 55.50 49.18 42.13 30.31 12.72 6.26
Deblur then Standard Augmented 53.90 51.47 48.44 40.35 23.85 15.86
Squint 55.65 54.30 51.76 46.21 37.24 31.39
AugMix (Non Expanded) 59.34 53.13 38.07 20.70 13.63 8.21
AugMix PixelLevel 58.93 51.68 32.10 14.84 9.12 4.48
Original w/ MiniBatch, N = 16, n = 1 52.10 46.53 31.25 16.10 8.86 4.40
Standard Augmented w/ MiniBatch, N = 16, n = 1 48.60 47.70 44.25 37.79 27.84 20.92
Non-Centered Augmented 55.91 53.80 49.22 40.77 31.00 25.66
Standard Augmented w/ NonSpatial Augmix 55.77 54.15 51.95 46.53 38.41 31.67
Standard Augmented 56.51 54.93 52.44 46.85 37.56 31.37
Spec By Type 56.50 55.39 52.33 47.78 39.81 33.84
Spec By Exposure (Ours) 58.55 56.57 53.83 47.74 40.21 35.93
Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Deblur then Original 55.50 49.18 42.13 30.31 12.72 6.26
Deblur then Standard Augmented 53.90 51.47 48.44 40.35 23.85 15.86
Squint 55.65 54.30 51.76 46.21 37.24 31.39
AugMix (Non Expanded) 59.34 53.13 38.07 20.70 13.63 8.21
AugMix PixelLevel 58.93 51.68 32.10 14.84 9.12 4.48
Original w/ MiniBatch, N = 16, n = 1 52.10 46.53 31.25 16.10 8.86 4.40
Standard Augmented w/ MiniBatch, N = 16, n = 1 48.60 47.70 44.25 37.79 27.84 20.92
Non-Centered Augmented 55.91 53.80 49.22 40.77 31.00 25.66
Standard Augmented w/ NonSpatial Augmix 55.77 54.15 51.95 46.53 38.41 31.67
Standard Augmented 56.51 54.93 52.44 46.85 37.56 31.37
Spec By Type 56.50 55.39 52.33 47.78 39.81 33.84
Spec By Exposure (Ours) 58.55 56.57 53.83 47.74 40.21 35.93

Table 1. Raw numbers from Fig. 5 in the paper. Non-expanded labels used during evaluation. Results are on the COCO minival set under
different blur parameters and exposure. From top to bottom, the blur type changes from P1 to P2 to P3. Networks trained with blur
augmentation would be trained on non-expanded labels.



Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Deblur then Original 55.50 49.50 41.07 28.32 12.19 6.24
Squint Expanded Labels 56.15 56.25 54.53 50.09 42.92 37.66
AugMix Expanded Labels 51.80 46.62 34.21 18.99 11.32 6.15
AugMix PixelLevel 58.93 51.50 33.26 16.49 9.41 0.05
Original w/ MiniBatch, N = 16, n = 1 52.10 46.99 31.77 16.92 9.71 5.07
Expanded Labels w/ MiniBatch, N = 16, n = 1 47.20 45.39 39.61 30.26 20.23 13.88
Expanded Labels 56.65 56.42 54.86 50.57 43.60 38.35
Expanded Labels w/ NonSpatial Augmix 56.33 55.99 54.54 50.32 43.10 37.85
Spec By Type Expanded Labels 56.70 56.75 55.23 51.59 45.55 40.81
Spec By Exposure Expanded Labels (Our Best) 58.62 58.01 56.40 50.97 46.37 43.78
Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Deblur then Original 55.50 49.50 41.07 28.32 12.19 6.24
Squint Expanded Labels 56.15 56.25 54.53 50.09 42.92 37.66
AugMix Expanded Labels 51.80 46.62 34.21 18.99 11.32 6.15
AugMix PixelLevel 58.93 51.50 33.26 16.49 9.41 0.05
Original w/ MiniBatch, N = 16, n = 1 52.10 46.99 31.77 16.92 9.71 5.07
Expanded Labels w/ MiniBatch, N = 16, n = 1 47.20 45.39 39.61 30.26 20.23 13.88
Expanded Labels 56.65 56.42 54.86 50.57 43.60 38.35
Expanded Labels w/ NonSpatial Augmix 56.33 55.99 54.54 50.32 43.10 37.85
Spec By Type Expanded Labels 56.70 56.75 55.23 51.59 45.55 40.81
Spec By Exposure Expanded Labels (Our Best) 58.62 58.01 56.40 50.97 46.37 43.78
Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Deblur then Original 55.50 49.50 41.07 28.32 12.19 6.24
Squint Expanded Labels 56.15 56.25 54.53 50.09 42.92 37.66
AugMix Expanded Labels 51.80 46.62 34.21 18.99 11.32 6.15
AugMix PixelLevel 58.93 51.50 33.26 16.49 9.41 0.05
Original w/ MiniBatch, N = 16, n = 1 52.10 46.99 31.77 16.92 9.71 5.07
Expanded Labels w/ MiniBatch, N = 16, n = 1 47.20 45.39 39.61 30.26 20.23 13.88
Expanded Labels 56.65 56.42 54.86 50.57 43.60 38.35
Expanded Labels w/ NonSpatial Augmix 56.33 55.99 54.54 50.32 43.10 37.85
Spec By Type Expanded Labels 56.70 56.75 55.23 51.59 45.55 40.81
Spec By Exposure Expanded Labels (Our Best) 58.62 58.01 56.40 50.97 46.37 43.78

Table 2. Raw numbers from Fig. 6 in the paper. Expanded labels used during evaluation. Results are on the COCO minival set under
different blur parameters and exposure. From top to bottom, the blur type changes from P1 to P2 to P3.



Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Low-Exposure Augmented 58.55 56.57 53.83 47.83 29.32 18.64
P1 Standard Augmentated 57.04 55.62 53.06 46.76 35.74 28.43
P2 Standard Augmentated 56.53 55.06 52.67 47.78 39.76 33.63
P3 Standard Augmentated 55.88 54.14 51.89 47.12 33.53 23.64
P1HE Standard Augmentated 41.98 46.20 47.66 45.32 38.62 31.85
P2HE Standard Augmentated 34.19 38.69 41.68 42.15 40.13 35.88
P3HE Standard Augmentated 14.84 19.81 28.30 33.73 30.67 24.56
Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Low-Exposure Augmented 58.55 56.57 53.83 47.83 29.32 18.64
P1 Standard Augmentated 57.04 55.62 53.06 46.76 35.74 28.43
P2 Standard Augmentated 56.53 55.06 52.67 47.78 39.76 33.63
P3 Standard Augmentated 55.88 54.14 51.89 47.12 33.53 23.64
P1HE Standard Augmentated 41.98 46.20 47.66 45.32 38.62 31.85
P2HE Standard Augmentated 34.19 38.69 41.68 42.15 40.13 35.88
P3HE Standard Augmentated 14.84 19.81 28.30 33.73 30.67 24.56
Variant Clean E1 E2 E3 E4 E5

Original 58.50 50.95 32.59 15.75 8.75 4.58
Low-Exposure Augmented 58.55 56.57 53.83 47.83 29.32 18.64
P1 Standard Augmentated 57.04 55.62 53.06 46.76 35.74 28.43
P2 Standard Augmentated 56.53 55.06 52.67 47.78 39.76 33.63
P3 Standard Augmentated 55.88 54.14 51.89 47.12 33.53 23.64
P1HE Standard Augmentated 41.98 46.20 47.66 45.32 38.62 31.85
P2HE Standard Augmentated 34.19 38.69 41.68 42.15 40.13 35.88
P3HE Standard Augmentated 14.84 19.81 28.30 33.73 30.67 24.56

Table 3. Raw numbers for standard augmented specialists performance (Fig. 2). Results are on the COCO minival set under different
blur parameters and exposure. From top to bottom, the blur type changes from P1 to P2 to P3. Networks are trained and evaluated on
non-expanded “standard” labels under blur augmentation, with the exception of Original.



Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Low-Exposure Expanded Labels 58.62 58.06 56.38 50.97 33.95 22.40
P1 Expanded Labels 57.39 57.13 55.67 50.78 41.93 35.50
P2 Expanded Labels 56.68 56.34 55.30 51.62 45.54 40.80
P3 Expanded Labels 56.80 56.28 55.06 51.22 38.61 29.34
P1HE Expanded Labels 40.99 47.00 49.85 49.13 44.55 39.40
P2HE Expanded Labels 18.84 38.67 43.47 46.02 46.12 43.72
P3HE Expanded Labels 14.84 23.90 32.92 40.05 36.14 30.67
Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Low-Exposure Expanded Labels 58.62 58.06 56.38 50.97 33.95 22.40
P1 Expanded Labels 57.39 57.13 55.67 50.78 41.93 35.50
P2 Expanded Labels 56.68 56.34 55.30 51.62 45.54 40.80
P3 Expanded Labels 56.80 56.28 55.06 51.22 38.61 29.34
P1HE Expanded Labels 40.99 47.00 49.85 49.13 44.55 39.40
P2HE Expanded Labels 18.84 38.67 43.47 46.02 46.12 43.72
P3HE Expanded Labels 14.84 23.90 32.92 40.05 36.14 30.67
Variant Clean E1 E2 E3 E4 E5

Original 58.50 51.50 33.26 16.49 9.41 5.20
Low-Exposure Expanded Labels 58.62 58.06 56.38 50.97 33.95 22.40
P1 Expanded Labels 57.39 57.13 55.67 50.78 41.93 35.50
P2 Expanded Labels 56.68 56.34 55.30 51.62 45.54 40.80
P3 Expanded Labels 56.80 56.28 55.06 51.22 38.61 29.34
P1HE Expanded Labels 40.99 47.00 49.85 49.13 44.55 39.40
P2HE Expanded Labels 18.84 38.67 43.47 46.02 46.12 43.72
P3HE Expanded Labels 14.84 23.90 32.92 40.05 36.14 30.67

Table 4. Raw numbers for expanded augmented specialists performance (Fig. 3). Results are on the COCO minival set under different blur
parameters and exposure. From top to bottom, the blur type changes from P1 to P2 to P3. Networks are trained and evaluated on expanded
labels under blur augmentation, with the exception of Original.
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