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Abstract. We propose GroundUp, the first sketch-based ideation tool
for 3D city massing of urban areas. We focus on early-stage urban design,
where sketching is a common tool and the design starts from balancing
building volumes (masses) and open spaces. With Human-Centered AI in
mind, we aim to help architects quickly revise their ideas by easily switch-
ing between 2D sketches and 3D models, allowing for smoother iteration
and sharing of ideas. Inspired by feedback from architects and existing
workflows, our system takes as a first input a user sketch of multiple
buildings in a top-down view. The user then draws a perspective sketch
of the envisioned site. Our method is designed to exploit the comple-
mentarity of information in the two sketches and allows users to quickly
preview and adjust the inferred 3D shapes. Our model has two main com-
ponents. First, we propose a novel sketch-to-depth prediction network for
perspective sketches that exploits top-down sketch shapes. Second, we use
depth cues derived from the perspective sketch as a condition to our dif-
fusion model, which ultimately completes the geometry in a top-down
view. Thus, our final 3D geometry is represented as a heightfield, allow-
ing users to construct the city “from the ground up”. The code, datasets,
and interface are available at visual.cs.ucl.ac.uk/pubs/groundup.

1 Introduction

Urban design has a deep impact on people’s lives, and it epitomizes the op-
portunities to bring Human-Centered AI for Computer Vision [91] into iterative
design [34]. The loop of drawing and discussing buildings, and specifically sketch-
ing the buildings’ masses, i.e. coarse shapes, is the crucial first stage of urban
planning [59]. “Architectural design begins with a massing study” [40], where the
term “massing” is used for this stage because it locks in the long-term balance
between constructed mass versus open space. In pilot interviews, architects said
that existing 3D software for urban modeling is too cumbersome for ideation
and does not support beginners.

Presently, the ease of sketching is hard to beat. 3D model precision is not the
top priority in massing. Rather, urban design aims to satisfy the constraints and
desires of whole teams of stakeholders. For example, an architect will play with
many massing alternatives, often changing their mind mid-sketch. Currently,
they iterate further in 2D with fellow architects on a shortlist of favorites, before
re-doing just one or a few designs in 3D software (e.g . Rhino or Sketchup), to
test out the idea. Our work aims to facilitate the design process by providing
the means to quickly preview designs in 3D.

http://visual.cs.ucl.ac.uk/pubs/groundup/index.html
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Fig. 1: An illustrative example of our method. (0) Users of our web-based
GroundUp system can optionally load registered maps, satellite images, or perspec-
tive photographs as underlay layers. These give context for the “massing” process. A
blank underlay is used in this example. (1) (bottom) The user sketches the initial foot-
prints of multiple buildings in a top-down view. These strokes are projected into the
perspective-view canvas (top). (2) The user sketches a perspective view of the site, and
then (3) they trigger our trained model to infer the 3D shape of the sketched buildings.
The user can then refine their ideas, iterating between 2D sketching and 3D visuals.

We propose GroundUp, a sketch-based 3D modeling tool for city massing.
As shown in Fig. 1 and the video, it works by getting the user to draw and refine
their ideas in two views: a top-down “plan” sketch and a perspective sketch. In
both views, users can optionally sketch on top of backprojected lines and selected
underlay photos. This helps to iterate or when remodeling of an existing site
is required. Tightly coupled with this interface, our algorithm quickly infers
3D massing-quality geometry. Such 3D geometry, once approved, can be refined
outside of GroundUp and used in the downstream stages of architectural design.

The model intertwined with this interface faces multiple challenges. Com-
pared to photos, sketch lines only provide a sparse signal about the scene. Be-
tween a top-down and perspective sketch, it is hard to expect texture regions to
match in appearance, making off-the-shelf approaches targeting 3D reconstruc-
tion from multi-view images [18, 47, 66] inapplicable to our problem. Addition-
ally, urban areas are inherently complex scenes, so perspective views that convey
building heights and roof shapes also suffer from extreme self-occlusions. With
many unobserved or partially-observed regions, we turn to diffusion as a gener-
ative formulation that could help our method to reconstruct plausible building
shapes (Fig. 1(3)).

Critically, the model updates must be responsive for the system to be usable,
imposing trade-offs between interactivity and the geometric quality from our
adapted latent diffusion model.

Our proposed solution to these challenges offers the following contributions:
– GroundUp is the first system for quick 2D sketch-based iteration on 3D

massing design of city blocks.
– Our novel sketch-to-depth prediction network for perspective sketches ex-

ploits the top-down view’s cues, and necessitated a bespoke training data
process for this important domain.
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– We carefully design our top-down diffusion model to handle multiple condi-
tions, integrating cues from both top-down and perspective sketches.

2 Related Work

Sketch-based 3D shape modeling systems greatly facilitate the creation of 3D
content, and the first proposed systems came in the 1970s [12,33]. For an in-depth
review of existing systems, we refer the reader to the comprehensive reviews [2,
4,6]. Here, we focus on works related to our overall goal of urban reconstruction
and papers most related to our method.

2.1 3D Building and City Reconstruction

The exciting works related to the problems of urban reconstruction can be classi-
fied into two sets of problems [20]: first of layout generation [1,16,32] and second,
of city modeling and rendering [37–39,46,77]. In our work, we aim to provide the
user with direct control of the layout via sketching in a top-down view, rather
than generating it automatically. Next, many algorithms [43,69,74] for architec-
tural modeling take as input point clouds or Digital Surface Models (DSMs) that
contain building height information, obtained with LiDAR (Light Detection and
Ranging) or photogrammetry [85]. In contrast, we pursue a different goal of how
to obtain buildings’ height information from sparse user-provided sketches.

Multiple works utilize convolutional neural networks (CNNs) for monocular
depth estimation from a satellite image [8,9,24,52,54] and building segmentation
in a satellite image [7,44,51], or both [44,51]. In the first stage of our method, we
also rely on a CNN to obtain a segmentation of a top-down sketch into individual
buildings. We then propose to inject this information into a monocular depth
estimation network that takes a perspective sketch as an input – the step that
we show is paramount in the context of sparse sketch inputs.

2.2 3D from Sketches

3D representations: Sketch to 3D inference has been based on voxel-based rep-
resentations [14], point clouds [73, 88], implicit functions [11, 29, 89], and 3D
diffusion models [3]. Existing methods have a restricted ability to reconstruct
details and to scale to larger scenes (e.g . multiple objects). We aim for the
prompt reconstruction of multiple object shapes within an interactive interface.
Our method controls for computational complexity and reduces memory foot-
print by regressing only 2.5D information, which is subsequently converted to a
3D mesh. We leverage depth and normal maps as intermediate representations.
Using intermediate representations such as depth and normal maps is a common
approach in sketch-based 3D reconstruction [23, 70, 76]. Just as we leverage a
U-Net architecture [63], several works do so to predict multi-view depth and
normal maps [42, 49, 90]. These methods then fuse the maps to a 3D shape. In
contrast, aiming at complex scenes with multiple occlusions, we predict only
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one perspective view map and rely on a diffusion model to predict a plausible
heightfiled, matching perspective and top-down views. Recent work targeting
lifting sketches of machine-made shapes to 3D [60], similar to us, first predicts
depth. Their full method focuses on the reconstruction of sharp edges. However,
it takes about two minutes for single object inference on average. In comparison,
our method runs end-to-end in under 2.7 seconds on multi-building scenes.

Ambiguity of 3D reconstruction: For single-view and even sparse multi-view
reconstruction, unobserved regions create uncertainty, on top of the shape am-
biguity of the observed geometric surfaces. Learning of shape category priors
is one of the most prominent approaches to dealing with sparse sketch in-
puts [3, 10, 29, 73, 83, 87, 88]. To further alleviate uncertainty, in single object
modeling, symmetry can be leveraged [30,79]. Other approaches regress param-
eters of predefined procedural programs [56, 58], or assume availability of addi-
tional information [41, 86]. For our task of modeling 3D building shape masses
in city neighborhoods, we have more pronounced uncertainty from the multi-
ple layers of occlusions in any perspective view. Additionally, 3D buildings and
their groups also have irregular shapes covering diverse geometric configurations.
Therefore, we leverage a generative diffusion model that allows us to obtain
plausible-looking building masses from two sparse sketch constraints (Fig. 1).

Urban modeling: Nishida et al . [56] explored data-driven inference of procedural
grammars for individual building reconstruction. The reconstruction ability of
such methods is limited to what is possible to represent with the considered
grammar. Also, their approach cannot infer the shape from a complete draw-
ing and assumes a specific drawing order, matching the grammar used. Liu et
al . [48] extends procedural modeling to VR sketch inputs. Vitruvio [72] targets
individual 3D building reconstruction from input sketches. The paper stresses the
importance of perspective 2D sketch-based modeling in architectural applications
for early idea development. Their method adopts an occupancy network [53] that
is either fine-tuned or trained from scratch on synthetic sketches of individual
buildings. However, their results show blobby reconstructions with some floating
geometry pieces, typical in implicit 3D shape representations such as occupancy
grids and signed distance fields [50,55,57]. Our heightfield representation allows
us to obtain higher quality reconstructions of multiple buildings in one scene.

2.3 Depth Estimation from RGB Images

Sketches are harder for shape inference than RGB images, but we draw lessons
nonetheless. For calibrated stereo pairs [13, 35, 82] or unstructured views with
known poses [22, 28, 67], cost volumes reveal metric depth by matching pho-
tometric appearance between views. Unfortunately, the winning disparities are
misleading with our textureless sketches. For depth from a single image, recent
methods rely on a learned prior for depth estimation [19,27,84]. Follow-ups uti-
lize 3D point networks [81] to combat scale ambiguity, dataset mixing [61] for
more generalizable models, classification heads [21] for improved accuracy, or
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generative models [17, 36, 65] for sharper depth maps. Recent methods combine
the two: cost volumes and strong image priors, to produce sharp metric depths
from multiple views [18, 47, 66]. Rather than relying on photometric matching,
we utilize a top-down sketch in an occupancy volume to resolve scale ambiguity.

3 Method

Our supervised model is tightly coupled with the user-facing 2D and 3D interface
described in Sec. 1 and in Fig. 1. The model has several components, shown and
summarised in Fig. 2.
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Fig. 2: Reconstruction pipeline overview. (I.) From input sketches, (II.) we es-
timate the segmentation of the top-down sketch into individual buildings (as detailed
in Sec. 3.1). (III.) We then inject the volumetric information about the spaces not oc-
cupied by buildings (based on the segmentation result and using a known perspective
camera from our interface) into the network that predicts depth and a foreground mask
for the perspective sketch view (further detailed in Sec. 3.2). (IV.) From the predicted
depth values, we obtain a partial 3D point cloud of the user-envisioned 3D city block.
(V) By projecting a sparse 3D prediction into a top-down view, we obtain an initial
guess for a top-down view heightfield. Finally, we rely on a diffusion model to obtain
a plausible 3D reconstruction that aligns with the perspective and top-down sketches
(as shown in V-VI. and detailed in Sec. 3.3).

3.1 Building occupancy mask estimation for top-down sketches

First, given a top-down sketch St we aim to obtain building occupancy Mt, and
instance segmentation M⋆

t maps (Fig. 2 II.): We use a subscript t to denote maps
of the top-down views. Our top-down occupancy prediction network follows a
UNet++ architecture: an encoder-decoder network with dense and nested skip
connections introduced in [92]. As an encoder, we use ResNet-50 [31], initialized
with the weights of the model pre-trained on ImageNet [15]. We train our network
with a weighted binary-cross entropy (BCE) loss

Lmask = − 1

N

N∑
i=1

[
λ1 [yi log(pi)] + λ0 [(1− yi) log(1− pi)]

]
, (1)
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where yi and pi are the ground-truth and predicted mask values for the ith pixel,
respectively. λ0 and λ1 are the weights for ground and building class predictions,
respectively. We empirically found that a bigger weight λ1 for the building pixels
improves mask prediction performance, accounting for class imbalance as build-
ings occupy a smaller area in the image. We provide further implementation
details in the supplemental.

We then segment into individual buildings, M⋆
t , by applying Connected-

Component Labeling [64] (Fig. 2 II.). We use this building-level segmentation
M⋆

t for visualization of the 3D reconstruction results in our UI (Fig. 2 VI).

3.2 Depth prediction from perspective sketches

Given a perspective sketch Sp and a top-down building mask Mt, we aim to
predict perspective depth maps Dp and foreground masks Mp (Fig. 2 III.) – We
use a subscript p to denote maps of the perspective views. In contrast to the
masks in Sec. 3.1, Mp labels both the building and ground pixels as foreground,
with the background being sky pixels.

Network design Predicting depth from a single sparse sketch is an ill-posed
problem. Moreover, in our scenario, each sketch can be quite complex with mul-
tiple buildings and occlusions. We design our perspective view depth predictor
to handle such complex urban scenes.

Our architecture is inspired by a multi-view depth estimation method [66].
The backbone of this network is a UNet++ architecture, identical to the one we
introduced in Sec. 3.1. To reduce ambiguity in a perspective view, we leverage
top-down view information. However, applying the multi-view stereo as in [66,78]
is not feasible, as our views have little visual overlap so it is infeasible to per-
form meaningful feature matching between such views. Instead, we exploit the
fact that the top-down building occupancy mask, Mt, provides information on
whether a location in 3D space is free. We construct a 3D occupancy volume,
which is aligned with the perspective view frustum. We construct it by slicing the
3D view frustum of the perspective camera with n depth planes at equidistant
intervals between the near dnear and far planes dfar. We populate the occupancy
volume by setting all voxels that fall above non-occupied regions to −ν and all
voxels above occupied regions to ν. We discuss the choice of ν in detail in the
supplemental material. Intuitively, we pick ν to be sufficiently large, but within
the range of our encoder features. We feed 3D occupancy features as input to the
UNet++ encoder. Namely, the 3D occupancy features are of shape D×H ×W ,
where D is the number of depth planes. When feeding these features into the 2D
encoder in the UNet++, we consider depth planes as image feature channels C.
Then, similarly to [66], we pass the input sketch through a ResNet-50 encoder to
obtain multi-level features. Starting from the first layer of the UNet++, at every
second layer, we concatenate output features with corresponding encoded sketch
features. This network design allows us to efficiently inject top-down sketch in-
formation, resulting in more accurate perspective depth predictions. We provide
the ablation study of our design in Sec. 4.
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Training During training, we use ground-truth Mt building occupancy masks.
We train our depth predictor with a weighted sum of four loss terms, so

LD = ωdLdepth + ωgLgrad + ωnLp,norm + ωmLmask, (2)

where ω∗ denotes the weight of the corresponding loss component. We introduce
each term below.

Ldepth is a multi-scale loss on depth predictions, that was shown to provide
sharper depth maps at depth discontinuities than a loss applied only at the final
depth map resolution [19,25,26,66]. Following previous works, we predict depths
at four resolutions from different levels of our UNet++ decoder, such that at
each of the subsequent scales the spatial resolution is doubled. It is defined as

Ldepth =

S∑
s=1

∥∥(Dp)s − (Dgt
p )s

∥∥
1

(3)

where
∥∥ ·

∥∥
1

is the L1-norm and (Dps, D
gt
ps) are the predicted and ground-truth

depth maps at the sth scale.
Similarly, inspired by [45, 66], to encourage smoother gradient changes and

sharper depth discontinuities in predicted depth maps, we use a multi-scale loss
Lgrad that penalizes differences in depth gradients between the predicted and
ground-truth depth map:

Lgrad =

S∑
s=1

∥∥∇xRs

∥∥
1
+

∥∥∇yRs

∥∥
1
, (4)

where Rs = (Dp)s − (Dgt
p )s.

Following Yin et al . [80], who showed that a geometric constraint on nor-
mal maps improves monocular depth estimation, we use a loss Lp,norm between
ground-truth Ngt

p and predicted Np normal maps:

Lp,norm =

N∑
i=1

(1− (Np)i · (Ngt
p )i), (5)

where we sum over the dot products of normal vectors (N∗
p )i ∈ R3 in correspond-

ing normal map locations i. We observed that this loss improves the performance
in our setting as well. Both Np and Ngt

p are computed on the fly from their cor-
responding depth maps.

Finally, Lmask is a weighted BCE loss, defined similarly to the one in Eq. (1).
We use it to segment out building and ground pixels.

3.3 Conditional diffusion model for 3D building reconstruction

In the previous section, we described how we obtain a depth estimation for a
perspective sketch view. As the next step, we backproject the depth map to
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obtain a 3D point cloud. From this point cloud, we initialize a heightfield of
the city block aligned with the top-down user sketch. To account for possible
inaccuracies in the depth prediction network, we leverage a mask Mt, predicted
with our building occupancy mask estimation network as described in Sec. 3.1.
We set all heightfield predictions that fall outside the occupied regions to a
constant ground-level value. We then use a diffusion model conditioned on the
input sketch and the initial heightfield from the perspective sketch view to com-
plete missing depth regions in the top-down view. Since our conditioning relies
on both views, the model predicts plausible 3D buildings that align with user
sketches. Note that, during training, we initialize heightfields using ground-truth
perspective view depth maps.

Network architecture We build on the latent space diffusion model by Duan et
al . [17], adapting it to handle multiple conditions. We chose a latent diffusion
model due to its memory efficiency and inference speed compared to image-space
diffusion models.

We map ground-truth depth maps to a latent space using a depth encoder:
z = Edepth(D

gt
t ). Additionally, we encode sketch and depth conditions: csketch =

Esketch(CSt) and cdepth = Edepth(CDt), respectively. We initialize Esketch and
Edepth with pre-trained weights. Specifically, for Esketch, we employ a ResNet-
50 architecture pre-trained on ImageNet. For the depth encoder, we employ
the one from the Stable Diffusion [62]. We pre-train the autoencoder following
their strategy and supervise using ground-truth top-down depth maps Dgt

t using
KL-regularization in the latent space. We fine-tune both latent encoders when
training the full model.

To construct the final input to the denoising network, we combine the sketch,
csketch, and depth, cdepth, conditions with the noisy depth latent zk, for a given
noise level k. To align features, we pass latent representations cdepth and zk
through two separate CNNs, consisting of two convolutional layers. The final
denoising network input is created by combining sketch latent features and depth
conditions with the noisy depth latent through an element-wise summation.

Training The training objective for the diffusion process is defined as

Ldiff = Ek∼[1,T ],zk,ϵk [∥ϵk − ϵθ(zk, cSt , cDt , k)∥]
2
, (6)

where ϵt and ϵθ are the ground-truth and predicted noise maps, at timestep k.
Additionally, we use auxiliary pixel-based losses to help train the conditioning

process. Firstly, L1 and L2 losses on predicted Dt and ground-truth Dgt
t depth

maps are used, defined as

LL1
=

∥∥Dt −Dgt
t

∥∥
1

and LL2
=

∥∥Dt −Dgt
t

∥∥
2
. (7)

We also use a loss on normal maps Lt,norm, defined similarly to the one in Eq. (5).
We find that this loss results in sharper, more uniform depth predictions. We
ablate its effect in Sec. 4.



GroundUp 9

The complete objective loss of our top-down heightfield completion diffusion
model is defined as

Ltotal = Ldiff + LL1 + LL2 + Lt,norm. (8)

3D mesh: From the ground up Finally, to obtain a 3D mesh, we create a 3D
mesh grid M3D ∈ RN×N×3 with N ×N vertices, where N is the width/height
of the top-down depth map where the horizontal x and vertical y axes map to
pixel coordinates. We obtain the height of each vertex vij in M3D as

vzij = dground − (Dt)ij , (9)

where dground is the depth value of the ground plane and (Dt)ij is the predicted
top-down depth at pixel location (i, j). We assign dground to the maximum depth
value in Dt.

4 Experiments

In this section, we evaluate our method on synthetic sketches. We first evaluate
our perspective depth prediction network and discuss the importance of various
design choices. We then assess our complete method, by evaluating our top-down
completion network on inputs predicted by the perspective depth network. We
compare with a few alternative baselines and ablate our design choices. The
details of data generation and splits are provided in the supplemental.

Perspective depth prediction In Tab. 1, we assess our design choices for
the perspective depth prediction network and compare against several baselines
using standard depth metrics [19]. Briefly, Abs Diff is the absolute difference
between ground-truth and predicted depth maps, Abs Rel is the absolute differ-
ence normalized by the ground-truth depth map, Sq Rel is the square of Abs Rel,
RMSE is the root mean square error between both depth maps, Log RMSE is
the root mean square error on logged depths, and a5 is the ratio of pixels whose
depth values have a relative depth error lower than 5%.

Baselines: We train a naive monocular depth predictor baseline from Sayed et
al . [66] without a cost volume (no source views for multi-view stereo), which we
refer to as Mono, and compare two image encoder backbones. In Tab. 1, lines
[1-2] refer to MonoS for a smaller (EfficientNet [71]) and MonoL for a larger
encoder (ResNet-50 [31]). A large image encoder leads to superiority across all
depth metrics, with a minimal increase in inference speed – 0.16 s on average
per sample. Given this, we use this larger backbone for all other experiments.

Ablations: In Tab. 1, OV represents our model with the occupancy volume
obtained as described in Sec. 3.2. We empirically found ν = 50 to give the
best results. This value is close to the mid-point of the range of multi-scale
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Model Abs Diff ↓ Abs Rel↓ Sq Rel↓ RMSE↓ Log RMSE↓ a5↑
1 MonoS 6.64 5.33 0.79 10.06 9.41 66.13
2 MonoL 5.57 4.33 0.53 8.58 7.44 68.82
3 OVS 6.23 5.24 0.74 9.28 9.55 67.80
4 OVL 3.49 2.13 0.21 6.54 3.43 89.20

Table 1: Quantitative evaluation of the perspective depth estimation. Mono
stands for a monocular depth predictor baseline by Sayed et al . [66], where subscripts
S and L define a smaller and larger encoder backbones, respectively. OV represents
our model with the occupancy volume obtained as described in Sec. 3.2. Please see
Sec. 4 for the details. All metric values apart from a5 are scaled up by 102.

image features. We hypothesize that this setting allows the network to leverage
the occupancy information most beneficially. We provide a detailed analysis of
the choice of ν in the supplemental. Lines [4] vs. [3] show the advantage of
the larger encoder backbone. Our complete model then comprises a ResNet-50
encoder backbone, and an occupancy volume with voxels assigned using ν = 50.

Comparison: In Tab. 1, lines [3-4] vs [1-2] show that the OV models outperform
Mono models. We show a qualitative comparison of the Mono baseline with our
OV method in Fig. 3, showing the importance of the proposed occupancy feature
volume for correcting for spatial ambiguity from single-view depth estimation.

TopView Mono (Baseline) OV (Ours)TopView

Fig. 3: Qualitative evaluation of the perspective depth estimation. Mono
stands for a monocular depth predictor baseline by Sayed et al . [66]. OV represents
our model with the occupancy volume, obtained as described in Sec. 3.2. Grey mesh
corresponds to the geometry obtained from the ground-truth heightfield. Point clouds
represent the estimated depth values from a perspective sketch. Colors encode the
distance from a camera. Our prediction visually aligns better with the ground-truth.

Top-down depth completion Our final goal is to infer plausible building
geometries from top-down St and perspective Sp sketches (Fig. 5 [a,b]). Namely,
we rely on the top-down sketch to recover building layouts and on the perspective
sketch to estimate buildings’ heights. We obtain height cues with the perspective
depth prediction network. Then, the aim of our diffusion model, introduced in
Sec. 3.3, is to produce top-down depth maps faithful to the top-down sketch St

and height cues CDt.
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Model Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓
St+CDt (fs) 0.1090 0.0221 0.0042 0.1246
St+CDt (pt) 0.1079 0.0218 0.0040 0.1221
St+CDt (pt) + Lt,norm 0.1056 0.0214 0.0039 0.1200
HeightFields [75] 0.1099 0.0225 0.0046 0.1341

Table 2: Quantitative analysis of top-down depth prediction. (fs) denotes
training sketch and depth encoders from scratch jointly with the diffusion model. (pt)
refers to pre-trained encoders for sketch and depth conditions, as described in Sec. 3.3.
St+CDt denotes that we use two conditions: a top-down sketch and a partial top-down
depth prediction based on the perspective sketch view. The numbers in the first two
lines represent diffusion models trained with the losses defined by equations Eqs. (6)
and (7), while the last line represents the model trained with the full loss Eq. (8).

Model Acc↓ Compl↓ Chamfer↓ Precision↑ Recall↑ F Score↑
St+CDt (fs) 3.89 2.91 3.40 81.6 87.7 84.2
St+CDt (pt) 3.79 2.90 3.34 81.8 88.1 84.4
St+CDt (pt) + Lt,norm 4.35 3.54 3.94 76.1 82.0 78.3
HeightFields [75] 5.35 6.99 6.17 70.4 63.9 66.0

Table 3: Quantitative 3D evaluation of the final reconstructed meshes. The
metrics in this table account for the visibility of 3D geometry in a perspective sketch
view. Please see Sec. 4 for details. The notation in this table matches the caption of
Tab. 2. We details on the metrics: Completion, Accuracy, Chamfer Distance, Precision,
Recall, and F-Score can be found in [5].

We first ablate the design of our network and then compare it with a deter-
ministic baseline. For evaluations, we use metrics in 2D (Tab. 2) and 3D (Tab. 3),
comparing against the ground-truth. For 2D evaluation, we use metrics similar to
the ones in Tab. 1. Since we focus on buildings and not the terrain, we compute
all 2D metrics only within buildings’ ground-truth regions, using building masks
Mt. We evaluate 3D metrics only for the parts of geometries observed in the per-
spective sketch viewpoints. This allows us to focus the evaluation on regions for
which the perspective sketches provide explicit control of the buildings’ heights.
Before computing sampled point cloud distances between predicted and ground-
truth meshes, we remove points not in the region around the back-projected
ground-truth perspective depth map.

Role of pre-training: Tab. 2 demonstrates the importance of pretraining sketch
and depth encoders, Esketch and Edepth, respectively. (fs) refers to training the
encoders from scratch jointly with the diffusion model and (pt) refers to pre-
training latent encoders for sketch and depth conditions.

Role of normal loss: We show the qualitative evaluation of the role of the nor-
mal loss in Fig. 4. It shows that the normal loss yields building geometries with
sharper corners and flat building tops. Computed on all building regions, 2D
losses in Tab. 2 show that the normal loss Lt,norm, defined with Eq. (8), sig-
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a. Ground-truth

Visibility

b. With Lnorm

View 1 View 1View 2 View 2

c. Without Lnorm

Fig. 4: Role of the normal loss. a) Visibility regions (red points) are computed based
on ground-truth geometry and the perspective sketch viewpoint. b) Prediction when
the normal loss is used: The red point cloud is riding slightly above the green prediction.
As shown in view 2 the height is slightly underestimated in the visible regions, but the
loss results in more even roofs overall. c) Prediction when the normal loss is not used:
the model produces blobby building geometry outside the visible regions.

nificantly improves the accuracy of top-down depth-predictions – reflecting on
the overall appearance of the buildings. 3D metrics in Tab. 3, computed only
on visible regions from the perspective sketch viewpoint, highlight a slight ge-
ometry shrinkage, visible in View 2 in Fig. 4. While adding a normal loss hurts
quantitative 3D metrics, we advocate its usage as it produces much sharper and
smoother surfaces, as shown in Fig. 4 and supported with Tab. 2.

Comparison with a deterministic baseline: Qualitative results of our method are
shown in Fig. 5 (d) and (g): We can infer realistic building geometries follow-
ing input sketches that closely resemble the ground-truth – Fig. 5 (e) and (h).
We compare our generative approach against the HeightFields [75] baseline – a
deterministic model designed for heightfield completion from multi-frame RGB
sequences. We train and test it on the same input as our model and visualize
the results in Fig. 5 (c) and (f). In particular, the HeightFields model’s test time
input is the output of our first step: the predicted partial point cloud from a
perspective view. This model is not a suitable stand-alone method for the task.
To train this model, we also added Lt,norm, as we found it to result in better per-
formance. However, even with this additional loss, the HeightFields model fails
to produce buildings with correct heights, and produces less plausible building
geometries. In particular, it fails to capture sharp details and flat rooftops.

Tabs. 2 and 3 show quantitative comparison of our full model with Height-
Fields [75] baseline. They show the superiority of our diffusion model in all
settings, confirming the visual observations.

5 User Study

Modeling Interface: To validate our contributions, we built an interactive user
interface in HTML, JavaScript, and Python. The 3D massing system runs real-
time on a Titan X and can be used on any touch-screen device thorough a
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e. Groundtruth 
Perspective

b. Perspective
sketch

c. HeightFields
Perspective

d. Ours
Perspective

a. Top-down
sketch

h. Groundtruth
Top-down 

f. HeightFields
Top-down

g. Ours
Top-down

Fig. 5: Qualitative evaluation on synthetic sketches. (a) and (b) show example
top-down and perspective sketches. (c) and (f) show reconstruction results obtained
with the HeightFields [75] method, which is trained and tested on the same data as our
method. (d) and (g) show reconstruction results by our method. (e) and (h) show the
heightfield of the ground-truth top-down depth map. Note that the colors are assigned
according to the ground-truth segmentation of buildings. Please zoom in to better see
the alignment of predicted geometries with the ground-truth buildings’ areas.

browser, ideally with a stylus. Broadly, the UI lets users sketch perspective and
top-down views on 2D canvases, edit strokes, project a top-down sketch into the
perspective canvas to align their sketches, and contains a 3D viewer. An overview
of the UI is in Fig. 1 and is described in greater detail in the supplemental.

Evaluation: To validate our system, we run a proof-of-concept user study. For
the study, we collaborated with one of the world-leading schools in urban design,
the Bartlett School of Architecture, at University College London. We engaged
5 urban design architects: 2 undergraduate students, advanced in their studies,
and 3 postgraduates with varying years of professional practice. Additionally, to
test how friendly our system is for users with limited modeling and sketching
experience, we engaged 5 further volunteers. All users watched a short video
tutorial and had 5 minutes to play with the interface before starting the task.
To have a concrete qualitative goal in our main study, we chose to provide
participants with reference top-down and perspective renderings as underlays
(the example screenshot is provided in the supplemental). We selected 9 scenes,
randomly distributed between participants. Each participant drew two scenes.

In a post-study questionnaire, all architects indicated that they were able
to recreate the building from the reference in under 5 minutes. As expected, it
was more challenging for novices, yet, 2/5 were satisfied with the outcome. On
a 5-point Likert scale, architects (novices) gave an average score of 0.8 (1.2) on
how well the results match the reference, with +2 for matching the reference
well and −2 for failing completely. On a 5-point Likert scale, architects gave an
average 1.4 score on how likely they are to use such an interface: where −2 for
highly unlikely and +2 for highly likely. This analysis shows that overall our
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Fig. 6: Freehand sketches and corresponding 3D reconstructions in our user interface,
made by urban design architects in our study. (e) shows automatically post-processed
results, rendered with an offline rendered, as described in the supplemental.

system achieves a set goal of fast prototyping of building masses, while future
work could aim to further improve the reconstruction accuracy. The detailed
statistics for the post-study questionnaire are provided in the supplementary.

In our pilot study, architects consistently indicated that it would take them
about 10 minutes in Rhino for scenes comparable to the ones we target. The pilot
study on SketchUp, documented in the supplemental, similarly showed that it is
not suitable for fast prototyping. This, in particular, shows the lack of convenient
tools for early design stages and reinforces the motivation for our work.

Two urban design architects also did freehand modeling after the main study
and completed post-study questionnaires. These sketches are shown in Fig. 6.

6 Conclusion and discussion

We have presented the first sketch-based method for early-stage urban design,
aligning it with the Human-Centered AI philosophy [68]. Taking into account
design workflows that commonly start from top-down city layouts, we proposed
models that, while working in image space, efficiently leverage information from
both perspective and top-down sketch views. GroundUp addresses the especially
challenging (but not unique) aspects of our problem: complexity and diversity of
scene geometries, sparsity of sketch inputs, and incomplete depth cues in user-
provided views. While we only show the results for a single perspective sketch,
our system is trivially extended to a multi-view setting: by projecting point
clouds inferred from extra perspective sketches into the top-down views passed
to our diffusion model. We provide numerical experiments in the supplemental.
With this work, we have taken a step toward quick building massing. To propel
the integration of our tool into design workflows, future work might focus on
directly predicting editable mesh representations and supporting finer details.
Additionally, it could be interesting to extended this work to trees and terrain,
for example, by sketching trunks and contour lines for the terrain.
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