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Abstract

Building a complete 3D model of a scene, given only a
single depth image, is underconstrained. To gain a full vol-
umetric model, one needs either multiple views, or a single
view together with a library of unambiguous 3D models that
will fit the shape of each individual object in the scene.

We hypothesize that objects of dissimilar semantic
classes often share similar 3D shape components, enabling
a limited dataset to model the shape of a wide range of ob-
jects, and hence estimate their hidden geometry. Exploring
this hypothesis, we propose an algorithm that can complete
the unobserved geometry of tabletop-sized objects, based on
a supervised model trained on already available volumetric
elements. Our model maps from a local observation in a
single depth image to an estimate of the surface shape in
the surrounding neighborhood. We validate our approach
both qualitatively and quantitatively on a range of indoor
object collections and challenging real scenes.

1. Introduction
We broadly categorize space in our world as being ‘occu-

pied’ and opaque, or ‘empty’ and transparent. Depth cam-
eras such as the Microsoft Kinect are able to give an es-
timate of which regions of a scene are composed of free,
empty space. However, each pixel in a depth image only
makes an estimate of occupancy in front of the first solid
surface encountered along that camera ray. Occlusion pre-
vents any information from being measured about the occu-
pancy of space beyond that first surface.

There are many applications, however, which critically
require a complete representation of the world geometry.
When a robot hand or autonomous vehicle interacts with
an unknown object in an unknown environment, a full 3D
understanding is required to navigate and prevent collisions.
In photo-editing, the full geometry would enable realistic
shadows from a new light source to be automatically added
to an image or stereo pair after capture.

A large amount of computer vision research has been de-
voted to reconstructing a full 3D world model from RGB or

Figure 1. Our volumetric completion. (a) Intensity image, for il-
lustration only. (b) (Input) 3D projection of the depth image, cap-
tured from the red arrow’s perspective, where occlusions induce
large empty spaces. (c) Ground truth occupancy captured using
KinectFusion with multiple views. (d) (Output) Our Voxlets algo-
rithm predicts a plausible completion of the occluded geometry.

depth images of a scene captured from multiple viewpoints,
thus coping with the effects of occlusion (e.g. [45, 28, 26]).
Instead, we focus on the task of classifying each voxel in a
local 3D scene as being either ‘occupied’ or ‘empty,’ given
just a single depth image from one viewpoint. An example
result of our algorithm is displayed in Figure 1.

In effect, we strive to predict the voxelized output of
KinectFusion [28], but without moving around. We achieve
this by learning a mapping from features on a depth im-
age to a structured prediction of geometry in the region of a
query point. We take inspiration from recent work that seg-
ments objects from images using silhouettes learned from
different object classes [34]. They showed that shape can
transcend class categories, enabling shape predictions to be
made without requiring semantic understanding. As we
care about shape, independent of semantic understanding,
we are free to use training objects that are different from
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the objects present at test time.
The key contributions that underpin our novel depth im-

age to voxel geometry framework are:
i) Voxlets: a representation of local multi-voxel geometry.
We use a structured Random Forest to learn a mapping from
a point in a 3D reprojection of a depth image to a structured
prediction of the geometry in the region around that point
without requiring any semantic information.
ii) Dataset: we introduce both a real world dataset and a
new measure for evaluating volumetric completion algo-
rithms. The dataset contains 90 scans of different object
configurations.
iii) Fitted predictions: we perform experiments evaluating
the efficacy of different methods of selecting structured ele-
ments to use in the scene. We demonstrate that our proposed
method outperforms naive alternatives.

2. Related work

Here we review related methods for completing un-
known regions of visual data. While similar, we do not
cover the problem of 2D image completion. Work in 2D
completion usually relies on the availability of extremely
large numbers of similar images [24], or on the assumption
that the necessary structure for completion is present in the
input data [5]. Image completion typically aims for a visu-
ally plausible output, as opposed to how well it predicts the
unobserved ground truth. As we are concern with full 3D
occupancy estimation we do not cover works related to 2D
scene shape estimation e.g. [15, 13]. Additionally, our ap-
proach utilizes standard consumer hardware, so we do not
review work that requires specialized equipment [58].
3D primitives ‘Geons’ were proposed by [2] as a set of
primitives, such as cylinders and cuboids, used by humans
in their recognition of object shapes. While in theory, geons
could be used by computers as building blocks to describe
natural objects, in practice, this was found to be challeng-
ing [10] due to their “idealized nature”, requirement for part
segmentation, labeling errors, and the coarseness of features
used to extract geons in the first place. However, fitting
bounding boxes has recently become a popular method to
explain the arrangement of objects in a scene. Recent work
has successfully incorporated high-level information such
as gravity, intersection, and stability [46, 30, 29]. Other
work has also made use of trained detectors [25, 55] and se-
mantics [39] to help propose bounding box locations. Gupta
et al. [20] estimate voxel occupancy from a 2D image,
which is regularized using cuboid bounding box hypothe-
ses. The obvious problem with bounding box style methods
is that they can only give coarse shape information, which
is ill suited for geometry completion.

Our work also makes use of 3D primitives. However,
unlike geons which are fixed, we learn a flexible distribution

of shape from training data, and are thus able to make higher
quality predictions compared to bounding boxes.
Specific shape models If prior knowledge is available, in
the form of exact 3D models of all the objects present in
the scene, then an instance-level model can be fitted to the
observed depths. When aligned correctly, this can produce
a perfect prediction of the unobserved geometry [27, 12, 3].
However, this alignment can be challenging in the presence
of heavy occlusion. If an exact model of the object of inter-
est is not present in the database, it is possible to fit objects
of the same class [54, 21]. Global reasoning can be applied
to find the best layout of objects, but this is still limited to
the objects and primitives available in the proposal set [17].
Deformation based methods such as [4, 44] directly deform
a target mesh to the observed data but can fail when an in-
correct model is retrieved from the database. It is possible
to apply these deformation based approaches on a part level
as opposed to the whole object level [47, 56]. Generative
models of 3D shape can be more expressive, but also re-
quire segmented individual objects for training [43, 59].

All of these methods rely on the availability of some
form of segmented training data, and on accurate detection
to localize each object or part of interest in the scene dur-
ing testing. We set out to get as much shape information
as possible without semantics, remaining free of having to
accurately localize a predefined set of classes at test time.
Surface completion Silberman et al. [51] tackle the com-
pletion of an incomplete multi-view reconstruction as a 2D
surface completion problem. By detecting planes, they can
complete their contours in a 2D projection using a novel
CRF method. However, they assume piecewise-planar
scenes, and require multiple views as input. Davis et al.
[9] complete surfaces by operating directly on the signed
distance field, the zero level-set of which defines the sur-
face location. They diffuse the signed distance field across
holes in the mesh to fill in the gaps. [23] use a data-driven
approach, finding matches in the mesh to fill the missing re-
gion. Symmetry can be leveraged to complete some types
of objects, e.g. [38, 57, 35]. However, this can be brittle, and
if symmetry is not detected, no predictions can be made.

In contrast to our approach, all of these methods are only
suitable when the amount of missing data is small relative
to the observed data.
Voxel space reasoning Finally, the two algorithms most
similar to ours both make predictions of full scene geom-
etry from a single depth image. Kim et al. [33] use a ‘voxel
CRF’ model with an aim of improving 3D semantic seg-
mentation, which they evaluate on 2D floor plans and image
reprojections. For training, they use semantically labeled
floor plans and images. They model the probability of a
voxel being occupied as a Gaussian centered on the first ob-
served voxel along a camera ray. Higher-order terms in the
CRF are used to enforce planar structures and to encourage
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Figure 2. 2D overview of our algorithm. (a) We model the world as a grid of voxels representing the signed distance to the nearest surface.
Here, we show an overhead view of a scene featuring two objects. (b) When observed by a depth camera, only the first voxel along each
ray is seen. This leaves a region of unknown occupancy extending beyond the depth surface. At test time, we define a cuboid region of
voxels, R, around each query point, s, aligned with the normal at s. (c) Our structured Random Forest makes a prediction for the signed
distance of each of the voxels inR given a feature x(s) computed from the observed geometry. (d) This prediction is placed into the scene,
and used to update the values of the voxels. (e) The aggregation of multiple such predictions forms our final occupancy estimate.

‘objects’ to remain contiguous.
Similarly, Zheng et al. [60] go from a single depth image

to a voxel representation of a scene. They complete missing
voxels by extruding visible points in the detected Manhat-
tan World directions of the scene, related to the completion
method of [35]. While we compare against a version of
this baseline, such voxel completion by extrusion is funda-
mentally limited to the Manhattan World propagation of the
observed volume.

Unlike [33], our algorithm does not require any semantic
or appearance information. Also, in contrast to the rule-
based approach of [60], we make structured predictions
in 3D space, and reason about shape variation by learning
from 3D training data.

Depth datasets While large datasets such as NYU-Depth
V2 [50] and the recently introduced SUN RGB-D dataset
[53] exist for single depth images, few real world datasets
are available containing complete 3D reconstructions [14].
At an object level, turntable datasets exist that capture
the full 360◦ shape of individual objects. For example,
the Washington RGBD Object dataset [37, 36] contains
hundreds of individual objects, but without detailed cam-
era poses, making reconstruction difficult. The Bigbird
dataset [52] is comprised of household objects along with
ground truth camera poses and registered meshes. At a
scene level, the few datasets featuring full reconstructions
only have a limited number of examples e.g. [49]. Existing
synthetic datasets tend to consist of single objects in isola-
tion [59].

In this work, we introduce a new dataset for benchmark-
ing purposes, consisting of 90 different configurations of
real objects, captured in tabletop scenarios, with complete
360◦ 3D reconstructions.

3. Voxlets algorithm overview

We model the geometry around an object as a regu-
lar grid of voxels V = {vi}. Following works such as

[8, 28, 43], each vi ∈ [−dmax, dmax] denotes the value of
the Truncated Signed Distance Function (TSDF) at that lo-
cation in the volume, where the zero level-set of V repre-
sents a surface. Each voxel, vi, stores the distance to the
nearest surface, truncated to a maximum value of ±dmax.
Here, vi is negative if it is inside solid opaque matter, and
positive if it is in free space. Our algorithm maps a 3D point
s, from just the observed depth image D, to a prediction of
the TSDF in a voxel neighborhood about that point. The ag-
gregation of such predictions for multiple points in the input
gives our final TSDF estimate for the scene. A 2D overview
of our approach is depicted in Figure 2.

Support regions The support regionR ⊂ V is a set of vox-
els in the neighborhood of s, for which our model can make
a prediction of the TSDF. Each R is a fixed-size cuboid of
voxels, whose x-axis is aligned with the measured normal
direction at s (Figure 2(b)). The size ofR is defined so that
it is large enough to capture local occupancy information at
an object level, but not so large that it would span the entire
scene. In a 2D world, the location of s and the direction of
its normal can unambiguously define the location and ori-
entation of R. In 3D however, there is an unconstrained
degree of freedom, namely rotation of the cuboid about the
axis of the normal. We resolve this by aligning the cuboid
such that its z direction is coincident with the world z-axis,
i.e. the ‘up’ direction of the scene. The top and bottom lim-
its of each cuboid region R are therefore parallel with the
world’s ground plane.

Voxlets At test time, we extract a feature description for
R from the observed geometry. Using a trained discrim-
inative model, we can make a prediction of the occluded
geometry inside ofR. We call this prediction of geometry a
voxlet. The voxlet, which comes out of the forest in canoni-
cal alignment, is then transformed from its local coordinate
system into world space to fill the voxels inR (Figure 2(d)).
The accumulation of multiple such predictions at different
locations forms our final estimate of the full TSDF.
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4. Learning a mapping from features to voxlets
We pose unobserved geometry estimation, given par-

tial observed information, as a supervised learning prob-
lem. More specifically, our goal is to learn a function
f : X → Y , that maps a feature vector x ∈ X , com-
puted from partially observed geometry at a point, to the
output space y ∈ Y representing the corresponding 3D ge-
ometry in a local region R. Unlike standard classification,
where the goal is to predict a category label for each x, our
output space is a multi-dimensional vector y ∈ Rw×d×h

that encodes the TSDF values in R. The dimensionality of
y is prohibitively large, making it difficult to use standard
multivariate regression approaches, e.g. [6]. Inspired by the
recent work of Dollár and Zitnick [11], we use a structured
Random Forest to learn the function f .

4.1. Training

Our training set, {(x1,y1), ..., (xn,yn)}, comprises re-
gions sampled from full 360◦ 3D reconstructions of objects,
captured across several different scenes. To train the struc-
tured forest, we pass a bagged subset of the training set to
each tree, starting at the root node. Each node is then tasked
with splitting the data so that the x’s sent to its children are
as similar as possible in shape, i.e. have similar y’s. Instead
of minimizing the structured loss directly, [11] approxi-
mates this loss at each node using a classification loss. To
split the data at a node, we sample a different random subset
of the dimensions of each yi, reduce their dimensionality to
M dimensions, and then cluster into two temporary classes.
Then a standard classification loss can be used on this new
discretization to evaluate the quality of different candidate
splits for each xi. In practice, we efficiently perform this
dimensionality reduction and clustering at each node using
randomized PCA [22]. Each training example at that node
is then assigned to one of the two possible clusters based on
the sign of the values of its first principal component. This
process is repeated until we cannot split the data any further.
Finally, as in [11], each leaf node stores the medoid of all
the examples that have arrived there. We refer to this as a
voxlet. We store the medoid for efficiency reasons, but it is
also possible to store multiple modes, e.g. [18].

4.2. Features

To extract a feature descriptor for a given point s in the
scene, we first re-project the entire observed depth imageD
into 3D space using the known camera intrinsics. We cre-
ate a TSDF voxel grid VD from these re-projected points
using the method described in [28]. Our feature vector x is
extracted directly from VD in the 3D neighborhood around
s. The values from VD at these locations form the dimen-
sions of x. These values can come from outside the region
R, helping to give spatial context to the prediction. We do
not use appearance information, instead favoring shape cues

provided by D. These features are fast to compute and cap-
ture the surface shape in the neighborhood of s.

In contrast to other 3D volume features e.g. [48, 7], we
sample offsets from a sphere centered at s. This sphere, of
radius rmax, is aligned to the normal and world up direction
at s (Figure 2(b)). For computational efficiency, we sample
a subset of 260 offsets within the sphere as possible candi-
date features.

5. Predicting occupancy at test time

Each tree in our forest makes a prediction about how the
volume surrounding a point in the input depth image is oc-
cupied. Our trees perform inference very efficiently, but
in practice, it is unnecessary to make a prediction densely
for every location in the input, because closely neighbor-
ing locations tend to yield similar predictions. We ignore
locations where the normal points away from the camera,
and also reject locations that point upward (as defined by
the scene’s ‘up’ direction). We then sample a set of loca-
tions throughout the input image, spanning the spectrum of
depths, to ensure uniform scene coverage. We only predict
occupancy for regions about these locations. For each loca-
tion in the set, we simply traverse each tree to its leaf node,
and return the prediction stored there (Figure 2(c)). In Fig-
ure 3, we illustrate a few voxlets and their world positions
in a real scene.

5.1. Choosing the best prediction

Each leaf node in each tree in our forest stores a voxlet,
i.e. the medoid of the examples that landed at that node.
For a given location in the input depth image, each tree will
vote for a different voxlet. We propose three strategies to
combine these region predictions from the different trees:
Forest Mean: We simply take the mean of the voxlets as the
forest prediction. We note that the truncation of the signed
distance function helps to make this style of accumulation
robust. A single incorrect estimation at a voxel can only be
wrong by a maximum amount of 2dmax, where dmax is the
level at which the distance function is truncated.
Forest Medoid: The previous approach can produce arti-
facts as a result of the averaging. Selecting the medoid
voxlet of all of the trees (i.e. the medoid of the medoids)
results in more robustness to outliers.
Observed Fit: Neither of the previous two approaches
forces predicted voxlets to be consistent with the observed
geometry from the input depth image D. To achieve this
consistency, we choose a single proposal, from all the trees,
that is most consistent with the observed geometry accord-
ing to an error measure E. To evaluate E we first compute
the 3D reprojection of the points in the input depth image,
and find the subset of these pointsP that fall into the current
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support regionR. We then compute the error as

E =
1

|P|
∑
p∈P

y(p)2, (1)

where y(p) is the TSDF value of that tree’s prediction at
location p. This measure rewards proposals which have a
level-set of zero at the same location as the observed geom-
etry. We evaluate these three strategies in Section 7.2.

For the final prediction of the output TSDF grid V , re-
gardless of strategy, we average the predictions of the over-
lapping voxlets (Figure 2(e)). We use a weighted aver-
age, which assigns more weight to voxlet predictions which
more closely match the observed geometry. Specifically,
we weight each prediction by exp(−αE). When α = 0 the
averaging is equivalent to a naive averaging with no weight-
ing. As α → ∞, the most consistent voxlets get a higher
weighting at the expense of less highly ranked voxlets. For
all our experiments we use α = 100. If a voxel in the output
grid V has no predictions made for it, we mark it as empty
(i.e. dmax). Finally, marching cubes [40] is used to convert
the final predicted TSDF to a mesh for visualization.

5.2. Implementation details

Given the large dimensionality of output space Y i.e. the
size of the support region R, we perform an initial dimen-
sionality reduction using PCA to 400 dimensions. We em-
pirically found this to have little impact on the quality of
our results, yet it provides a large speed up at training time
and reduces storage requirements. We use an ensemble of
40 trees with simple axis aligned feature tests at each node,
and keep splitting while there is a minimum of 5 examples
at a node, up to a maximum depth of 30. When clustering
the data at each node, we set the subset of random dimen-
sions, M , for the randomized PCA to 20. At test time, we
only make predictions for a subset of N = 300 locations
in the input depth image, sampling each point with a prob-
ability proportional to its depth. The effect of varying N
is analyzed in the supplementary material. We truncate the
TSDF at dmax = 0.02m. When extracting features, we set
the radius of the sphere rmax to 0.075m and 0.35m for the
tabletop and NYU-Depth V2 datasets respectively.

In our experiments, to increase coverage, we predict
one of two different size voxlets (requiring two different
forests). The first voxlet is centered at s and is longer in the
y-direction, being of shape (x× 2x× x). This is the direc-
tion that is approximately parallel to the normal at s (Figure
2(b)). This allows the voxlet to make a larger prediction
backwards into the scene, compared to sideways which typ-
ically already has observed data. The second voxlet has
shape (x × 2x × 2.5x) and its base is fixed to the ground
plane. It is more suitable for making predictions for semi
occluded geometry. For a given sample location in a depth
image at test time, we randomly choose one of the two

x

z y

Figure 3. Predicted voxlets. Each tree predicts the occupancy at
each sample location, in the form of a voxlet. Here we depict just
three voxlets that have been meshed using marching cubes, but
hundreds of predictions are made in practice.

forests to make a prediction. For our tabletop scenes we set
x = 0.25m, while for room-size predictions of NYUv2 we
use x = 0.5m. In the supplementary material we explore
the effect of varying this parameter.

Predicting the occupancy for a single Kinect depth image
takes less than three minutes using our unoptimized Python
implementation on a single CPU thread. Currently, the ma-
jority of the running time is spent placing predicted voxlets
into the output grid which could be trivially sped up using a
more efficient GPU implementation.

6. Datasets
Unfortunately, existing RGBD datasets of real scenes

were typically collected to evaluate semantic segmentation,
object detection, or camera pose estimation. To our knowl-
edge, no standard datasets exist that capture the full unoc-
cluded geometry of a large number of scenes, without sec-
tions of missing data caused by occlusion. To overcome
this, we introduce a new tabletop-object dataset, that we will
make available to aid benchmarking of volumetric comple-
tion. Examples from this dataset are shown in Figure 5.

Our tabletop dataset contains the full geometry of 90
tabletop scenes, reconstructed using the KinectFusion [28]
implementation of [32]. This is seven times larger than the
volumetric dataset used in [60]. Each scene consists of be-
tween 2 to 6 household objects, from a set of 50, placed
on a tabletop. We manually annotated the extents of the
test volume for each scene. Predictions outside this domain
are not used during evaluation. The dataset is split into 60
training and 30 testing scenes, captured in three different
locations. The strict split ensures that no objects appear in
both the training and test sets – see the supplementary ma-
terial for further examples. We include the raw color and
depth frames, together with the reconstructed mesh for each
scene. It is worth noting that this ground truth dataset is only
accurate up to the reconstruction error of [32].

The widely used NYU-Depth V2 [50] dataset does not
contain complete 3D reconstructions for each scene. How-
ever, [19] introduced a synthetic version with manually
placed 3D geometry which we use for benchmarking.
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Figure 4. Evaluation region. For a fair comparison across all al-
gorithms, we score on voxels that are, jointly, within the extents
of the room, inside the camera frustum, and behind the surfaces
visible in the input depth image.

7. Experiments
We evaluate our Voxlets approach using the two datasets

described in the previous section. The ultimate aim of our
algorithm is to accurately classify occupied vs. empty space
around objects. Therefore, we report the per-voxel precision
and recall over all the test data, using the sign of the accu-
mulated TSDF as the final binary prediction of occupancy.
We also report the Intersection over Union (IoU) of the pre-
dicted occupancy compared to the ground truth, which is a
good measure of overall success. The evaluation region is
defined as the set of voxels within the extent of the scene
which are both within the camera frustum and behind the
observed surface (Figure 4). The extents are tagged manu-
ally for Section 7.2, and automatically for Section 7.3. Note
that we do not evaluate on the observed empty space. In
both datasets the ‘up’ direction is extracted from the ground
truth ground plane of the volume. In practice, this plane and
its orientation could be detected automatically [50].

7.1. Baselines

We compare to Zheng et al. [60] as it is one of the few
occupancy prediction papers that does not depend on se-
mantics. We evaluated against their best-case idealized al-
gorithm for reconstructing voxel occupancy, as described in
Section 2 of their paper. First, the Manhattan axes of each
segment in the scene are computed using [16]. For each
segment, their axis-aligned voxel search is then performed
for each unobserved voxel, marking voxels as filled if more
than two Manhattan directions hit a voxel directly observed
by the camera. Unlike our method, their approach requires
a segmentation of the scene. We use the ground truth ob-
ject segmentation (only for these two baselines) to illustrate
the toughest non-semantic rivals possible. On the table-
top dataset, we also compare to a bounding box baseline,
which fits minimum volume bounding boxes to the points
of each segment using Manhattan directions computed us-
ing the method of [16].

7.2. Tabletop results

Here we perform experiments on the tabletop dataset in-
troduced in Section 6. In Table 1 we can see that our Voxlets

Method IoU Precision Recall
Bounding Box with GT 0.445 0.840 0.491
Zheng et al. [60] with GT 0.528 0.773 0.630
Voxlets Observed Fit 0.585 0.793 0.658
Voxlets Forest Medoid 0.326 0.822 0.358
Voxlets Forest Mean 0.312 0.845 0.337
Vgt Ground truth voxels 0.962 0.991 0.971
Vpca GT voxels post PCA 0.908 0.977 0.927
Vnn Perfect forest 0.724 0.940 0.758
Vagg Perfect aggregation 0.701 0.897 0.766

Table 1. Quantitative results on our tabletop dataset. We also show
that our final ‘Observed Fit’ selection strategy produces superior
results compared to naive averaging and other methods e.g. [60].

algorithm outperforms both the idealized Zheng et al. [60]
method and the bounding box baseline. Qualitative results
are presented in Figures 5 and 1. Despite severe occlusions
and fragmentation of objects in the input depth map, we are
still able to produce plausible completions. Note that we do
not merge the observed geometry onto our predictions. Ad-
ditional refinement to respect the observed geometry would
likely improve results, but efficient inference is still an open
area of research [41].

We also compare the performance of the different strate-
gies for selecting voxlets from our structured forest as de-
scribed in Section 5.1 (see bottom rows of Table 1). We
can see that our ‘Observed Fit’ approach is best overall,
with both superior recall and IoU compared to the other ap-
proaches. As a result of multiple conflicting overlapping
predictions, ‘Forest Medoid’ and ‘Forest Mean’ tend to un-
derpredict, resulting in higher precision but poorer recall
and IoU. We favor ‘Observed Fit’ as it chooses the predic-
tion that agrees most with the observed geometry at each
sample point, producing better completions.

For introspection, we investigated the performance of
Voxlets by replacing various stages with an oracle that has
access to the ground truth occupancy (see Table 1):
Vgt: Instead of using the structured prediction, the ground
truth voxels in the local region R are extracted and then
placed directly into the output grid. This represents what a
perfectly-trained version of Voxlets could produce. Errors
in Vgt occur for two reasons. Firstly, the proposed support
regions can fail to cover some areas of the scene, hurting
the recall. Secondly, quantisation effects are introduced in
the extraction and re-insertion of voxel volumes.
Vpca: The ground truth voxels in R are compressed, then
decompressed, using a pre-learned PCA model. This eval-
uates how well PCA covers the space of voxlet shapes and
shows that it does not reduce performance significantly.
Vnn: We find the nearest neighbor training example that is
the most similar to the ground truth voxels in R at each lo-
cation. These are the best possible predictions, given the
training set. These scores suggest that the dataset is chal-
lenging and still contains unexploited variety.
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Input view of scene Observed Geometry Forest Medoid Zheng et al. [57] Voxlets Ground truth

Figure 5. Tabletop results. Results for our tabletop dataset, where the 3D views are shown viewing in from the left. For clarity, we
insert a ground plane during rendering and do not superimpose the observed input geometry on top of our predictions. Voxlets succeeds
in capturing the coarse geometry of the objects whereas Forest Medoid under predicts and Zheng et al. [57] tends to produce floating
predictions. The last row shows a failure case where Voxlets introduces incorrect geometry on the top of the box closest to the camera as
there is no observed depth due to the occlusion in the Kinect sensor.

quantisation effects in aggregation.
Vpca: The ground truth voxels in R are compressed, then
decompressed, using a pre-learned PCA model. This eval-
uates how well PCA covers the space of voxlet shapes and
shows that it does not reduce performance significantly.
Vnn: We find the nearest neighbor training example that is
the most similar to the ground truth voxels in R at each lo-
cation. These are the best possible predictions, given the
training set. These scores suggest that the dataset is chal-
lenging and still contains unexploited variety.
Vagg: We use our structured Random Forest with an ora-
cle at the voxlet aggregation step. Each voxlet is greedily
added to the accumulator only if its inclusion increases the
score for the given scene. More sophisticated aggregation
of voxlets could further exploit the forest’s predictions.

7.3. Synthetic NYU-Depth V2 results

In Table 2 we present results for the synthetic NYU-
Depth V2 [48] dataset using the ground truth of [18]. We
have adapted these 3D scenes to make them suitable for

Method IoU Precision Recall
Voxlets 0.508 0.665 0.697
Zheng et al. [57] with GT 0.346 0.601 0.467

Table 2. Quantitative results for the synthetic NYU-Depth V2
dataset of [18]. Both methods use single depth maps generated
from the synthetic geometry as input, but Zheng et al. [57] uses
the ground truth object level segmentation to aid prediction.

volumetric completion by voxelizing each one using [1],
and rendering a depth image from the same viewpoint as
the original Kinect camera location. We randomly assign
500 scenes from the official training set for training and
200 scenes from the test set for testing. For the method of
Zheng et al. [57] we compute a local coordinate frame us-
ing the ground truth segmentation for each separate object.
Despite this advantage, Voxlets produces superior comple-
tions.

7

Figure 5. Tabletop results. Results for our tabletop dataset, where the rendered views are shown viewing in from the left of the Kinect
input. For clarity, we insert a ground plane during rendering and do not superimpose the observed input geometry on top of our predictions.
Voxlets succeeds in capturing the coarse geometry of the objects whereas Forest Medoid under predicts and Zheng et al. [60] tends to
produce floating predictions. The last row shows a failure case where Voxlets introduces incorrect geometry on the top of the box closest
to the camera as there is no observed depth due to the occlusion because of the camera baseline in the Kinect sensor.

Vagg: We use our structured Random Forest with an oracle
at the voxlet aggregation step. Each voxlet is greedily added
to the accumulator only if its inclusion increases the score
for the given scene. Results suggest that more sophisticated
aggregation of voxlets could further exploit the predictions.

7.3. Synthetic NYU-Depth V2 results

In Table 2 we present results for the synthetic NYU-
Depth V2 [50] dataset using the approximate but geomet-
rically complete ground truth of [19]. We have adapted
these 3D-meshed scenes to make them suitable for volu-
metric completion by voxelizing each one using [1], and
rendering a depth image from the same viewpoint as the
original Kinect camera location. We randomly assign 500
scenes from the official training set for training and 200
scenes from the test set for testing. For the method of
Zheng et al. [60] we compute a local coordinate frame us-
ing the ground truth segmentation for each separate object.
Despite this advantage, Voxlets produces superior comple-
tions. Images of these results can be seen in the supplemen-
tary material.

Method IoU Precision Recall
Voxlets 0.508 0.665 0.697
Zheng et al. [60] with GT 0.346 0.601 0.467
Bounding boxes with GT xx xx xx

Table 2. Quantitative results for the synthetic NYU-Depth V2
dataset of [19]. Both methods use single depth maps generated
from the synthetic geometry as input, but Zheng et al. [60] uses
the ground truth object level segmentation to aid prediction.

7.4. Qualitative NYU-Depth V2 results

While Voxlets has been designed for tabletop scenes,
we show here qualitative results on the challenging NYU-
Depth V2 [50] dataset. We use our model trained on the
synthetic dataset of [19] from the previous section. Re-
sults must be inspected by eye, here and in the supplemen-
tary material, because quantitatively evaluating synthetic
ground truth vs. predictions, made from real Kinect depth
input images, is not possible: the alignment between the
real depth and the manually created ground truth is inaccu-
rate. For completeness, we also compare to the methods of
[39, 17] which utilize additional cues in the form of appear-
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Input view of scene Observed Geometry Lin et al. [39] Geiger and Wang [17] Zheng et al. [60] GT Voxlets

Figure 6. NYU-Depth V2 results. Here we qualitatively compare different occupancy predictions methods using real Kinect depth images
from the NYU-Depth V2 [50] dataset. Unlike [39] and [17], our Voxlets algorithm does not require any appearance information. All results
are rendered from the same viewpoint, and for [39] and [17] we do not show the predicted walls and floor.

ance and semantic classifiers. These methods were not de-
signed specifically for occupancy estimation. For Zheng et
al. [60], we use the ground truth object segmentation masks
provided by [50].

Limitations As a supervised learning algorithm, Voxlets is
limited by the data available at training time. Our voxlets
are a fixed size, and success correlates with the test-scene
having similar sized objects. Holes in the observed depth
images at object boundaries can also cause problems e.g.
the spiky top in the last row of Figure 5, and sharp edges
can sometimes be rounded due to aggregation.

8. Conclusions and future work

We have demonstrated that Voxlets can successfully re-
cover 3D geometry using only a single input depth image.
Our supervised algorithm efficiently combines both selec-
tion and pose estimation of local shapes, using simple fea-
ture test evaluations to predict local geometry occupancy.
Even similar objects vary in size and viewing direction,
while objects from distinct semantic classes share enough
3D shape components to allow good, though not perfect,

reconstructions. Though intended for tabletop objects, our
results on indoor scenes are on par with more constrained
algorithms.

For some applications, the quality of our predictions may
already be enough, e.g. to aid robot grasping [61] or navi-
gation. Currently, it is not guaranteed that our results are
physically stable. How to best incorporate physics-based
reasoning [60, 46] is still an open problem, but enforcing
this prior may improve accuracy. One interesting potential
application of our method is to use the predicted completion
as a prior for SLAM. As new data arrives, a next-best-view
algorithm [42, 31] could leverage our predictions to guide
the camera to a position which captures the geometry most
likely to be informative for verifying our proposals.
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