
Deep Blending for Free-Viewpoint Image-Based Rendering

PETER HEDMAN, University College London
JULIEN PHILIP, Inria, Université Côte d’Azur
TRUE PRICE, UNC Chapel Hill
JAN-MICHAEL FRAHM, UNC Chapel Hill
GEORGE DRETTAKIS, Inria, Université Côte d’Azur
GABRIEL BROSTOW, University College London / Niantic

(1)
(2)

(3)

Novel view Deep Blending
Ranked Pixel

Contributions
Predicted

Blending Weights

Our novel view Soft3D [Penner17]

ULR + soft viz [Buehler01,Eisemann08]

(c) (d)(b)(a)

IB
R

Al
go

rit
hm

Real surface Reconstruction

Fig. 1. Image-based rendering blends contributions from different input images to synthesize a novel view. (a) This blending operation is complex for a variety
of reasons. For example, incorrect visibility (e.g., for the non-reconstructed green surface in input view (1)) may result in wrong projections of an image into
the novel view. Blending must also account for, e.g., differences in projected resolution ((2) and (3)). Previous methods have used hand-crafted heuristics to
overcome these issues. (b) Our method generates a set of ranked contributions (mosaics) from the input images and uses predicted blending weights from a
CNN to perform deep blending and synthesize (c) novel views. Our solution significantly reduces visible artifacts compared to (d) previous methods.

Free-viewpoint image-based rendering (IBR) is a standing challenge. IBR
methods combine warped versions of input photos to synthesize a novel
view. The image quality of this combination is directly affected by geometric
inaccuracies of multi-view stereo (MVS) reconstruction and by view- and
image-dependent effects that produce artifacts when contributions from dif-
ferent input views are blended. We present a new deep learning approach to
blending for IBR, in which we use held-out real image data to learn blending
weights to combine input photo contributions. Our Deep Blending method
requires us to address several challenges to achieve our goal of interactive
free-viewpoint IBR navigation. We first need to provide sufficiently accurate
geometry so the Convolutional Neural Network (CNN) can succeed in find-
ing correct blending weights. We do this by combining two different MVS
reconstructions with complementary accuracy vs. completeness tradeoffs.
To tightly integrate learning in an interactive IBR system, we need to adapt
our rendering algorithm to produce a fixed number of input layers that
can then be blended by the CNN. We generate training data with a variety
of captured scenes, using each input photo as ground truth in a held-out
approach. We also design the network architecture and the training loss to
provide high quality novel view synthesis, while reducing temporal flicker-
ing artifacts. Our results demonstrate free-viewpoint IBR in a wide variety
of scenes, clearly surpassing previous methods in visual quality, especially
when moving far from the input cameras.

Authors’ addresses: Peter Hedman, University College London; Julien Philip, Inria,
Université Côte d’Azur; True Price, UNC Chapel Hill; Jan-Michael Frahm, UNC Chapel
Hill; George Drettakis, Inria, Université Côte d’Azur; Gabriel Brostow, University
College London / Niantic.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
0730-0301/2018/11-ART257 $15.00
https://doi.org/10.1145/3272127.3275084

CCS Concepts: • Computing methodologies → Image-based render-
ing; Neural networks; Reconstruction;

Additional Key Words and Phrases: Image-based rendering, Free-viewpoint,
Deep learning

ACM Reference Format:
Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Dret-
takis, and Gabriel Brostow. 2018. Deep Blending for Free-Viewpoint Image-
Based Rendering. ACM Trans. Graph. 37, 6, Article 257 (November 2018),
15 pages. https://doi.org/10.1145/3272127.3275084

1 INTRODUCTION
There is increasing demand for realistic 3D content that is easy to
capture, and that can be used for free-viewpoint, interactive nav-
igation. Image-Based Rendering (IBR) can provide such realistic
interactive imagery, but current methods [Hedman et al. 2016; Ortiz-
Cayon et al. 2015; Penner and Zhang 2017], still suffer from many
visible artifacts, especially when moving far from the input photos.
Novel views are synthesized in IBR by combining warped pixels
from input photos; output quality depends on the computation of
visibility in the presence of inaccurate geometry and on the blending
method. With only few exceptions (e.g., [Li and Li 2008]), previous
solutions use heuristic blending to handle geometric inaccuracies,
and to correct image seams and ghosting due to view-specific dif-
ferences in the combined images. Blending needs to correct for
artifacts due to incorrect occlusion edges, visible seams due to texture
stretch/misalignment, and lack of color harmonization, as well as
view-dependent effects from highlights, different exposures, and
unsuitable camera selection. These complex, often contradictory
requirements have led prior work to develop case-specific, hand-
crafted heuristics that always fail for some configurations.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084

257:2 • Hedman et al.

Ourmain insight is that a data-driven solution is currently a better
strategy to effectively satisfy these challenging requirements. We in-
troduce a deep blending algorithm, leveraging convolutional neural
networks (CNNs) that learn blending weights that will most reason-
ably approximate real imagery for novel view synthesis (Fig. 1).
There are several challenges to overcome in order for our deep

blending approach to be realized. To maintain interactive frame-
rates during rendering, we need to tightly integrate the feed-forward
evaluation of the CNN in our rendering loop. To do this, we choose
a network architecture with a fixed number of inputs. We generate
inputs to the network by warping the input photos to the novel view
and creating “mosaics” of ranked contributions from the different
input views. We then choose the fixed set of best candidates for each
pixel, that are subsequently input to the network for blending using
learned weights. To provide sufficient training data to learn these
blending weights, we leverage a dataset of 2630 input photos from 19
distinct scenes. Apart from the validation set, each photo is used as a
ground truth target that the network strives to reconstruct, held-out
in a round-robin fashion. Finally, to overcome alignment problems
and flickering, we use a perceptually-motivated loss together with
an auxiliary temporal consistency term. In IBR, each viewpoint in a
scene is a distinct sample. We seek to generalize to novel viewpoints,
never seen during training, allowing free-viewpoint rendering.

For our deep blending method to succeed, the underlying geome-
try we use to create the mosaics should be faithful in several regards.
While Multi-View Stereo (MVS) algorithms now provide impressive
3D reconstructions, they cannot achieve the quality required for real-
istic IBR. A first set ofMVS algorithms (e.g., [Schönberger et al. 2016])
provides high-quality depth maps containing fine details, while a
second set provides better globally consistent geometry, i.e., they
estimate a smooth connected surface, even in hard-to-reconstruct
(e.g., textureless) regions (e.g., [Jancosek and Pajdla 2011; Reality-
Capture 2016]). The meshes provided by either method still result
in artifacts if used directly by an IBR algorithm (e.g., Buehler et al.
[2001]). State-of-the-art IBR algorithms try to overcome this diffi-
culty using per-view geometric structures, which may not be globally
consistent but achieve good visual quality [Chaurasia et al. 2013;
Hedman et al. 2016] if blended correctly.

Nevertheless, they still suffer from geometric inconsistencies, out-
liers, and inaccurate occlusion edges. We develop a new per-view
geometry refinement method that overcomes the shortcomings of
each of the two sets of reconstruction methods. We do this by using
the information available in the one set of methods as a prior to com-
pensate for information lacking in the other. Our solution, which
is separate from our neural network, generates per-view geometry
that is of sufficient quality to allow deep blending to succeed.
Overall, we present two main contributions:

• A deep convolutional neural network solution to the IBR
blending problem.

• An improved per-view geometry refinement, and geometry-
awaremesh simplification, that together produce high-quality
source geometries that facilitate deep blending for IBR.

Our solution provides realistic image-based rendering across the
variety of scenes attempted by our community so far, and it grace-
fully degrades in quality when the geometric reconstruction fails

completely or exposure differences are too pronounced. For a major-
ity of the scenes tested – both outdoors and indoors – our method
achieves excellent quality for free-viewpoint navigation, while also
being capable of achieving interactive frame-rates.

2 MOTIVATION AND PRIOR WORK
There are several significant artifacts that frequently occur in IBR,
illustrated in Fig. 2. The first set are related to inaccurate geometry
and occlusion edges, and result in ghosting, “floating geometry,”
and the incorrect projection of background onto foreground or
vice versa. The second are “visible seam” artifacts that are related
to texture misalignment, different resolutions, and shifts in colors
for the same (or neighboring) content across input images. The
third are view-dependent effects such as highlights. For highlights,
we wish to preserve a smooth version where possible, and discard
insufficiently sampled highlights. Finally, interactive IBR requires
that output imagery be temporally stable (see supplemental video
for an illustration). Here, we review prior work and discuss how
existing methods have attempted to address these artifacts.

As there is a vast body of prior work on 3D geometry reconstruc-
tion, we review only the most recent works related to our approach.
We also discuss related IBR algorithms, especially for blending, and
recent work on machine learning techniques for blending and IBR.

2.1 Geometry Reconstruction and Occlusion Edges
Multi-view stereo algorithms (e.g., [Furukawa and Ponce 2010; Goe-
sele et al. 2007; Jancosek and Pajdla 2011]) perform automatic 3D
geometry reconstruction from unstructured photo datasets with di-
verse viewpoints. Approaches based on Delaunay tetrahedralization
(e.g., [Jancosek and Pajdla 2011; Labatut et al. 2007; RealityCapture
2016]) are able to generate impressive 3D models from photos, even
in the presence of traditionally hard cases such as large textureless
regions. Similarly, Ummenhofer and Brox [2017] show that it is
possible generate dense meshes from noisy multi-view stereo point
clouds using a regularized signed distance field.

In parallel, other methods improve the quality of individual depth
maps by discretizing the scene depths and enforcing smoothness
in image-space [Hirschmuller 2006; Scharstein and Szeliski 2002].
These methods are able to produce edge-aligned geometry, which
is smooth for textureless regions, albeit with visible staircasing arti-
facts due to discretization. Recently, Patch-Match based algorithms
such as COLMAP [Schönberger et al. 2016] have been demonstrated
to create the most accurate geometry in benchmark tests [Knapitsch
et al. 2017; Schöps et al. 2017]. By constraining the viewpoint, lay-
ered depth panoramas offer usable geometry, but cannot represent
view-dependent effects and suffer from artifacts when moving away
from the point of capture [Hedman et al. 2017; Zheng et al. 2007].

These methods allow easy capture since they only require photos
as input, but the accuracy of reconstructed geometry is generally
insufficient to ensure realistic IBR. In contrast, our accurate per-view
geometry, along with our deep blending approach, attains realistic
image synthesis while maintaining the advantage of easy capture.

2.2 Image-Based Rendering and Blending
IBR can generate realistic 3D content, using only photos as input.
Early approaches [Gortler et al. 1996; Levoy and Hanrahan 1996]

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:3

Crop

Crop

Crop

Crop

Selective IBR

Selective IBR

Soft3D

InsideOut

Soft3D

ULR

ULR

ULR

Deep Blending (Ours)O
cc

lu
si

on
 E

dg
es

Deep Blending (Ours)Te
xt

ur
e

S
ea

m
s

Deep Blending (Ours)

H
ig

hl
ig

ht
s

FG
 B

le
ed

in
g

Deep Blending (Ours)

3D Mesh

InsideOut

3D Mesh

3D Mesh

Fig. 2. Example artifacts, one per row, commonly faced by IBR methods. Each row shows an example frame produced by our method, a cropped region of
this image, and the same crop for three other IBR methods. Five methods are compared: Textured Mesh-based rendering, Selective IBR [Ortiz-Cayon et al.
2015], ULR [Buehler et al. 2001] with soft visibility [Eisemann et al. 2008], InsideOut [Hedman et al. 2016], and Soft3D [Penner and Zhang 2017]. Only some
methods shown per row; videos of all methods are available in the supplemental material.) Row 1: Occlusion edge artifacts. Our CNN-based solution can
correct for imprecise object boundaries without overblurring. Row 2: Seams due to color harmonization errors. Deep Blending correctly harmonizes the result,
whereas the other methods shown have moderate to subtle color edge artifacts. Row 3: Highlights from illumination. The textured mesh fails to capture this
effect at all; our network blends seamlessly compared to other approaches. Row 4: Foreground bleeding into background. Incorrect object geometry and poor
per-view depth maps can lead to severe ghosting artifacts in existing methods. Our network learns to output blend weights that overcome this behavior.

required complex capture setups, making them impractical for wide-
spread use. Recently, commercial systems [Anderson et al. 2016]12
are able to deliver high-quality results by capturing data with a
multi-camera rig and constraining the virtual viewpoint. Methods
that can use an unstructured set of photos [Buehler et al. 2001; Heigl
et al. 1999] facilitate our goal of ease-of-capture.

The Unstructured Lumigraph [Buehler et al. 2001] uses a globally
consistent geometric proxy and blends the reprojected input images
in the novel view. The importance of maintaining accurate results at
occlusion edges was identified early, using soft visibility [Pulli et al.
1997; Zheng et al. 2009] or superpixels and alpha matting [Zitnick
et al. 2004] to improve the blending. Assumptions about source
image positioning have also been considered. For example, floating
1https://facebook360.fb.com/facebook-surround-360/
2 https://www.blog.google/products/google-vr/experimenting-light-fields/

textures [Eisemann et al. 2008] use optical flow in short-baseline
video sequences to correct for inaccurate geometry.

Davis et al. [2012] performed bilinear blending of viewpoints
located approximately on the surface of a sphere around a capture
subject; this assumes the source viewpoints vary smoothly along
a 2D manifold, which is more restrictive than the general capture
scenarios we target. Among other special capture configurations,
Arikan et al. [2014; 2016] present a fast rendering and seam-hiding
method for the case of high-quality diffuse scenes imaged using
laser scanners.
More recently, per-view representations have been used to main-

tain accurate image edges during rendering. These include super-
pixels [Chaurasia et al. 2013; Ortiz-Cayon et al. 2015] or per-view
meshes [Hedman et al. 2016]. In these solutions, different blending
strategies have been used. We review these ([Buehler et al. 2001;

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

https://facebook360.fb.com/facebook-surround-360/
https://www.blog.google/products/google-vr/experimenting-light-fields/

257:4 • Hedman et al.

Off-line Scene Preprocessing
SfM

Registration
Local Depth

Maps
Global
Mesh

Per-view Geometry
Refinement

Edge-preserving
Simplification

Off-line	CNN	Training
Pool of Original Input Views (Multiple Scenes)

Other Views Left-out Image

Deep Blending

Predicted Blended
RGB Output

Training Loss
• Perceptual

Differences
• Temporal

Consistency

CNN

Blending

Global Mesh Render
+ 4 Mosaics

Blend Weights

Blended RGB Output

InsideOut Tiled
N-View Selection

Per-pixel View
Prioritization

Per-image Depth
Mesh Rendering

Voxel
Grid

Novel
Viewpoint

4 View Mosaics

Warped Views

On-line Deep Blending Pipeline

Fig. 3. Overview of our approach. Top left: Scene preprocessing entails
constructing 1) 6-DoF image positions using SfM, 2) per-image depth maps
using MVS, 3) a global mesh, 4) mesh-refined depth maps, and 5) simplified
per-view meshes respecting occlusion edges. Top right: Training uses a
perceptual loss to compare our pipeline’s output (bottom) for a known view-
point to the real image; a temporal consistency term penalizes differences
after viewpoint perturbation. Bottom: Deep Blending outputs color images
for novel scene viewpoints. At each output pixel, InsideOut [Hedman et al.
2016] ranks pixels in the dataset images. Our network takes 4 color mosaics
of the top samples, plus a global mesh rendering, and outputs per-pixel
blend weights. The weighted sum of inputs forms a new color image.

Chaurasia et al. 2013; Hedman et al. 2016; Kopf et al. 2014a]) when
discussing our approach to blending. Soft3D [Penner and Zhang
2017] is the most recent IBR algorithm, based on a regular discretiza-
tion of space using the input images and a sophisticated blending
approach using a soft estimation of visibility. Global proxy IBR
methods (e.g., [Buehler et al. 2001; Eisemann et al. 2008; Heigl et al.
1999]) are inherently limited in realism by the accuracy of the 3D
reconstruction; per-view solutions score much better on this count.

All previous per-view methods have quite limited free-viewpoint
capabilities, e.g., due to discretization [Penner and Zhang 2017], an
implicit fronto-parallel superpixel assumption [Chaurasia et al. 2013;
Ortiz-Cayon et al. 2015], or – to a lesser extent – due to a variety of
rendering artifacts (see Fig. 2) that occur for many existing methods,
including InsideOut [Hedman et al. 2016]. Our approach follows a
similar architecture to InsideOut, but enhances realism thanks to
the improved per-view geometry and deep blending.

2.3 Learning for IBR and Blending
The early work on image-based priors for IBR [Fitzgibbon et al. 2005;
Woodford and Fitzgibbon 2005; Woodford et al. 2007, 2006] used a
form of learning to synthesize novel views, based on a dictionary
of patches from the input images. More recently, Convolutional
Neural Networks (CNNs) and deep learning have been applied to
the novel view synthesis problem. DeepStereo [Flynn et al. 2016]
learns to predict a depth and a color using separate “towers” in
the network, building on traditional plane-sweep algorithms. Zhou
et al. [2016], use an encoder-decoder approach to predict the flow
field transforming an input image to the novel view. There has been
interesting work in learning for view synthesis in the context of
Light Fields [Kalantari et al. 2016; Srinivasan et al. 2017]. However,
the constraints of the narrow-baseline inputs result in very different
design choices and it is difficult to see how to directly apply these
to our scenario of wide-baseline capture.
While these methods provided very impressive and promising

results, they do not allow free-viewpoint rendering, and most of
them are far from interactive. Like many deep learning methods, the
wide-baseline CNN solutions [Flynn et al. 2016; Zhou et al. 2016]
suffer from visual artifacts that do not provide the level of realism
we seek. Our approach provides much richer input into the learning
step – resulting in higher realism – by using high-quality refined
geometry to provide ranked source-image mosaics to the CNN.

Finally, deep learning has been used to estimate weights for HDR
blending [Kalantari and Ramamoorthi 2017], or for filtering for
Monte-Carlo path tracing [Bako et al. 2017]; while these methods
are similar in spirit to our approach for learning blend weights, they
involve a different set of challenges requiring different solutions.

3 OVERVIEW
The core part of most IBR algorithms is the reprojection and blend-
ing of input images to synthesize a novel view. This blending step is
a very complex operation that needs to compensate for inaccurate
geometry and for artifacts induced by view- and image-dependent
effects. Previous methods use complex heuristics, hand-crafted to
work for specific scene configurations. However, they are generally
unable to provide realistic free-viewpoint navigation for IBR. Deep
learning offers a very powerful tool for coping with variable inputs,
while explicitly rewarding high quality blending. Our key novelty
is the introduction of a deep blending method for IBR, that synthe-
sizes each novel view after having learned to compute the blending
weights to combine the relevant input photos.

Deep blending for IBR poses several challenges. We first need to
provide the network with the best possible geometry to reduce the
amount of artifact correction required. We then need to determine
the CNN architecture and adapt previous rendering algorithms to
maintain interactive free-viewpoint navigation, while tightly inte-
grating with learning. We also need to generate sufficient training
data to allow the network to learn good blending weights. Finally,
we need to define a loss function that minimizes rendering arti-
facts. We next present an overview of how we solve each of these
challenges, using the pipeline shown in Fig. 3.
Our input is a set of input photographs of a scene. We first cali-

brate the cameras using structure from motion (SfM) [Schönberger
and Frahm 2016]. Following previous work [Hedman et al. 2016],

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:5

we use per-view meshes for rendering. The goal of our first step is
to provide high quality per-view depth map refinement, and gen-
erate the compact meshes that respect occlusion edges as much as
possible. We achieve this by combining two different MVS methods:
COLMAP [Schönberger et al. 2016] – based on Patch-Match [Barnes
et al. 2009] – that provides fine details in each per-view depth map,
and methods based on Delaunay tetrahedralization [Jancosek and
Pajdla 2011; RealityCapture 2016] that provide a smooth mesh esti-
mate in regions where COLMAP fails. We use the complementary
information from each approach as a prior for the other during our
per-view mesh refinement algorithm.
Integrating a Neural Network into an interactive IBR system is

challenging. To allow a per-frame interactive rendering loop that
includes a CNN evaluation, we choose a U-net [Ronneberger et al.
2015] architecture, and generate a fixed set of inputs to the CNN.
For rendering, we build on InsideOut [Hedman et al. 2016], which
at each output pixel selects a variable number of input photos to
blend into a final image (Fig. 3). In our rendering loop, we rank these
per-pixel selections to generate a fixed number of mosaics that are
blended into the novel view. Each pixel of the first mosaic contains
the color value of the best selected pixel, the second mosaic contains
the second best, and so on. Pixels are ranked according to an IBR
cost [Hedman et al. 2016] and a new visibility term we introduce.
Training data for our supervised learning of the CNN weights

is non-traditional: the same photo serves, at times, as one of the
inputs to the mosaic-building step, or it is held-out so it can serve
as the ground truth output that the network tries to reconstruct
from mosaics of other input photos. We generate a large dataset of
input images through round-robin use of this hold-out strategy, and
through data augmentation. The test results we show are distinct
samples (i.e., novel viewpoints) never seen in training. Finally, to
achieve good visual quality, to overcome alignment issues and to
reduce flickering, we use a perceptually-motivated loss [Johnson
et al. 2016] and introduce a temporal coherence term. Our experi-
ments show that the network training can be run on a general set
of images from training scenes, and that performance is stable even
when no images for a given testing scene were seen during training.

Our approach allows interactive rendering for many of our scenes,
and provides close to photorealistic free-viewpoint navigation, even
far from the input cameras. Compared to previous work, our method
significantly reduces many glaring artifacts.

4 HIGH-QUALITY PER-VIEW MESHES FOR DEEP IBR
The input to ourmethod is a set of photos calibratedwith SfM [Schön-
berger and Frahm 2016]. From these, we can useMVS reconstruction
to generate per-view depth maps, that can then be converted into
per-view meshes for IBR [Hedman et al. 2016]. There are several
desirable properties for these meshes: 1) they need to respect oc-
clusion edges, and should be “cut” with no geometry straddling a
depth discontinuity, thus avoiding reprojection artifacts in novel
views; 2) they should have low triangle complexity to minimize the
effect on frame-rate during rendering, and preferably have fewer
triangles in the background. When these requirements are satisfied,
visibility-related artifacts are reduced during rendering, making
the task easier for our deep blending approach, while maintaining
interactive frame-rates.

Fig. 4. Top: Globally consistent reconstruction with RealityCapture [2016].
Bottom: Same scene and viewpoint using COLMAP [Schönberger and
Frahm 2016; Schönberger et al. 2016]. We can clearly see that the feature-
less wall is completely missing from the COLMAP depth maps, but a smooth
estimate is provided by RealityCapture. Conversely, the details of the back
of the chair are only present in the COLMAP depth maps.

To respect occlusion edges, we introduce a per-view refinement
algorithm that fuses and combines information from two different
MVS reconstruction methods that have different completeness-vs.-
accuracy tradeoffs. To achieve low mesh complexity, we present
a view-dependent mesh simplification method that achieves very
high compression rates while respecting occlusion edges. Our solu-
tion results in significantly better preservation of occlusion edges
and much lower mesh complexity overall, compared to previous
methods [Hedman et al. 2016].

4.1 Per-View Geometry Refinement
To achieve good quality per-view refinement, we combine two com-
plementary MVS methods, one with better detail accuracy, and one
with better global completeness. For accurate depth map reconstruc-
tion, we use COLMAP [Schönberger et al. 2016]. COLMAP resolves
small details accurately, but can break down for large textureless
regions. For global meshing, we use RealityCapture [2016], which
is the commercial evolution of the CMPMVS method [Jancosek and
Pajdla 2011]. This method provides a smooth global mesh estimate,
providing information in regions that are not reconstructed by other
approaches (e.g, textureless content). The strengths and weaknesses
of each method are clearly illustrated in Fig. 4.

The Patch-Match-based algorithm of COLMAP successfully finds
small structures in the scene, but often tends to produce unreliable
edges, since it optimizes for photoconsistency using a patch. This is a
known problem in stereo algorithms, i.e., the algorithm must choose
between edge fattening and missing small structures (see Scharstein
and Szeliski [2002], who point out that approaches focusing on

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

257:6 • Hedman et al.

Fig. 5. Merging globally and locally accurate depth maps leads to improved
occlusion edge handling and artifact minimization. Left: Reference image
Top middle: Globally complete RealityCapture mesh. Top right: Locally
accurate COLMAP depth map. Bottommiddle: Fused COLMAP and Real-
ityCapture depth maps. Bottom right: Our refined depth map.

details fail in textureless regions). However, since we already have
a globally consistent geometry, we can significantly constrain the
search space for our stereo optimization and still obtain reliable
results by performing single-pixel optimization.
At a high level, we optimize for per-pixel photoconsistency, but

use the geometries estimated from MVS as strong priors to avoid
ambiguity. We first fuse the COLMAP depth maps with the Reality-
Capture mesh wherever COLMAP is uncertain (see Appendix A),
replacing any unreliable depth by the global geometry. Then, we run
a per-pixel photoconsistency optimization to refine the occlusion
edges further, similar to InsideOut [Hedman et al. 2016].

Our refinement first uses Patch-Match optimization to refine pixel
depths i , searching for a low photoconsistency cost while preferring
that they stay close to the original depth map. We minimize the cost

c(i) = cp(i) + αnncnn(i), (1)

where the photoconsistency cost cp(i) [Hedman et al. 2016] em-
phasizes both color and image-gradient differences, and cnn(i) =
d(i,D)2/depth(i)2 is the depth-normalized square distance to the
nearest neighbor in the original depth map D. We balance the terms
with αnn = 4 × 10−4.

We then apply a bilateral median filter on the depth. We stop this
optimization after two iterations (two backwards-forwards passes
of patch match optimization and two median filter iterations), as
the change is negligible after this for all our test scenes.
The resulting depth maps both preserve small features and pro-

vide reliable information in textureless regions. In Fig. 5, we show
how our approach combines the advantages of both sources of 3D.

4.2 Occlusion Edges and Meshing Simplification
The refinement step above produces a dense depth map which we
use to create per-view meshes for IBR. We now need to simplify the
per-view meshes as much as possible while preserving occlusion
edges, to minimize the effect on rendering performance. We do
this by first identifying occlusion edges, then “cutting” the mesh to
preserve them, followed by a mesh simplification step.

4.2.1 Meshes from Depth maps. First, we need to reliably detect
triangles at occlusion edges. Noisy detection often creates isolated

Fig. 6. Left: Occlusion edges, marked in blue, for a depth map using In-
sideOut [Hedman et al. 2016]. Right: Our solution provides much cleaner
edges on surfaces at grazing angles.

components which degrades simplification. Previous work used a
simple 3D distance threshold [Hedman et al. 2016] for this purpose.
We found that the min/max aspect ratio measure from [Pébay and
Baker 2003] more reliably detects degenerate triangles at occlusion
edges. To avoid over-cutting background surfaces and surfaces at
grazing angles, we also account for depth and the slope of the
underlying surface when detecting occlusion edges.

We connect each pixel to its neighbors with a quadrilateral. This
results in two different possible pairs of triangles. We keep the pair
which minimizes ρ, the maximum aspect ratio of the two triangles.
Quads with a large ρ value are likely to be at occlusion edges, since
this value corresponds to a large difference in depth. A naive solu-
tion would thus be to discard quads with ρ above a threshold. For
surfaces seen from grazing angles, this removes too many triangles
as the depth varies greatly. We would also discard too many small
foreground quads for rendering, since our measure is scale-invariant
and we want to keep closely seen objects as clean as possible. To
overcome these issues, we modulate ρ by two terms. For grazing
angle triangles, we estimate a smooth normal for each pixel and
modulate ρ by the dot product between the normal and direction
to the viewpoint. We clamp this modulation to avoid a more than
10 times reduction. For foreground pixels, we also modulate ρ by
a second term, which is the disparity at the pixel normalized by
the median disparity over the image. This modulation is clamped
between 50% and 200% (see Appendix B for details). Examples of
occlusion edge cuts using our method are shown in Fig. 6.

4.2.2 Mesh Simplification. Once occlusion edges have been cut,
we create a full-resolution mesh that we simplify based on the edge-
collapse method of Garland and Heckbert [Garland and Heckbert
1997]. There is a rich literature on view-dependent simplification for
polygonal models, including, e.g., screen-size error thresholds and
silhouette preservation [Luebke and Erikson 1997], or sophisticated
methods to avoid folding triangles [El-Sana and Varshney 1999].
The solution we present here is simpler, since we target the specific
case of per-view meshes for multi-view photo datasets.
We construct our per-view meshes to have uniformly sized tri-

angles in image-space. Compared to earlier approaches [Hedman
et al. 2016], which strive for uniformly sized triangles in 3D, this
better preserves objects close to the camera (with smaller triangles),
while also reducing the number of triangles in the background. We
achieve this by dividing the standard quadric simplification cost by
the squared distance between the edge and the camera.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:7

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

2 4 8 16 32 64 128 256 512

Er
ro

r

Simplification Ratio

Hedman et al. 2016
Meshes
Our Meshes

Fig. 7. Top Left: Simplification using InsideOut meshing [Hedman et al.
2016]. Top Right: Our solution, which provides higher uniformity in image
space and preserves occlusion edges with good quality. Meshes were sim-
plified by a factor of 256x. Bottom:Mean relative error in 3D at different
simplification ratios for a set of 20 meshes from different scenes. More than
80% of meshes could not be simplified at 512x using InsideOut.

One frequent problem with quadric error metrics are “folding
triangles”: we avoid this by preventing normal deviation caused by
collapse over 60◦. Finally, we multiply the weight of occlusion edges
by the targeted simplification ratio to encourage their preservation.
As we can see in Fig. 7, we can achieve extremely high simplification
factors (up to 256x) with little loss in quality.

5 LEARNING TO BLEND
The blending step of IBR needs to compensate for geometric and vis-
ibility errors, and for view- and image-dependent effects. Correctly
handling visibility for IBR in the presence of inaccurate geometry
is a very hard problem that has plagued the field from the outset.
Various hand-crafted heuristics include soft visibility [Eisemann
et al. 2008; Pulli et al. 1997; Zheng et al. 2009], the “prefer back-
ground” heuristic [Chaurasia et al. 2013], per-view fuzzy depth
test [Hedman et al. 2016], and the discretized soft visibility of the
Soft3D approach [Penner and Zhang 2017]. Similarly, final blending
weights are typically heuristics, which try to address the different
sources of artifacts. These include the angle and distance terms for
ULR [Buehler et al. 2001], the more sophisticated texture-stretch
heuristics of Hyperlapse [Kopf et al. 2014b] – requiring an offline
graphcut/Poisson blending step – or the adaptive bandwidth of
InsideOut [Hedman et al. 2016]. Despite attempts at a more rigor-
ous Bayesian formulation [Pujades et al. 2014], reliably achieving
high-quality blending effectively remains elusive.

Deep learning has demonstrated the ability to perform very com-
plex image transformation tasks and is thus an ideal candidate for
solving the IBR blending problem. We train a convolutional neural
network (CNN) to generate blending weights that are then used to

3D Mesh View Mosaics

+

Blended Image
[15]

[32]

[48]

[64]
[96]

[5]

[48]

[64]
[96] [128]

[32]

[48]

[64]

[96]
[128]

Fig. 8. DeepBlending network architecture. An RGB view of the global
mesh is concatenated channel-wise with 4 RGB mosaic images and fed
into a fully convolutional U-net-type architecture. Each successive block is
generated via a 3×3 convolution followed by a ReLU activation; the number
of channels for each block is shown in brackets. Dotted lines represent
“skip connections,” where features in the down-convolution portion are
concatenated to features in the up-convolution portion. Decreases in spatial
resolution are made by convolving with a stride of two, and increases use
nearest-neighbor upsampling before the convolution is applied. A softmax
activation is applied to obtain per-pixel blend weights. The novel image is
obtained by taking the per-pixel weighted sum of the 5 network inputs.

combine warped (or reprojected) contributions from different input
images. Our goal is to evaluate the feed-forward CNN in an interac-
tive renderer, imposing strict constraints on network architecture,
input layers, and the renderer. Generating sufficient training data
to find the weights is also challenging. Finally, care must be taken
when defining the training loss: we want to produce images that are
as realistic as possible, avoiding temporal artifacts such as flickering.

5.1 Network Architecture and Rendering Algorithm
Our goal of tight integration in the rendering loop imposes strict
requirements in terms of network architecture, and precludes in-
volved solutions such as Recurrent Neural Networks [Gregor et al.
2015]. In addition, we need a CNN that is capable of handling im-
age transformations in a multi-scale fashion. For these reasons, we
choose a small U-net architecture [Ronneberger et al. 2015] with
skip connections, which has been demonstrated to work well on
image transformation tasks [Zhu et al. 2017].
The network architecture is shown in Fig. 8. This architecture

has a receptive field of 63 pixels at the bottleneck, in theory giving
it the power to correct for artifacts that are at most this size.

This network architecture requires a fixed number of inputs, and
we choose to provide it with five images, one global mesh render
and 4 source-image mosaics, that need to be blended. Similar to
InsideOut [Hedman et al. 2016], our rendering algorithm uses a
spatial acceleration data structure to select, at each output pixel,
pixels in multiple input images that contribute to the novel view.

On a high level, InsideOut uses a voxelized representation of the
scene to accelerate view selection, where each voxel indexes relevant
triangles from the per-view meshes. First, it finds the visible voxels
for a novel viewpoint, and ranks the input images associated with
each visible voxel according to their potential usefulness. Next, the
triangles for the top-ranked images at every voxel are rendered into
the novel viewpoint, which provides a set of unique input images
for each pixel in the output view. In the end, each output pixel will
have 4 to 12 color values rendered into it, depending on the views
selected in the corresponding voxel.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

257:8 • Hedman et al.

Deep Blending (DB)

Fuzzy DBFuzzy Mosaic

Depth Cost DBDepth Cost Mosaic

Fig. 9. Our depth cost reduces the effect of “floating geometry” that occurs
with a fuzzy depth test [Hedman et al. 2016]. Left: Full view of our output.
Middle: Top-ranked mosaic per cost. Right: Network outputs.

Since we have chosen to fix the number of inputs to our CNN, we
need to modify the rendering algorithm to “pack” this information
into four separate layers that will then be fed to the network for
blending. We do this by creating four mosaics formed by re-ranking
the set of sampled source pixels on a per-output-pixel basis. We
rank source pixels using the IBR cost of InsideOut, but modulate
the cost with an additional depth component (see Appendix C),
effectively replacing the fuzzy depth test that tends to encourage
the appearance of “floating” per-view geometry. We see the effect
of this new cost function in Fig. 9. For each pixel, we store the four
most highly ranked contributions in the four mosaics. In the case of
missing geometry, we fill holes in the input mosaics with a rendered
view of the textured global mesh. These four mosaics, together with
a view of the global mesh, form the input layers to our network.
This is illustrated in Fig. 10.

We experimented with using extra input channels (depth, normal,
heuristic blend weights), but these did not provide a conclusive
improvement. This is probably because these inputs have already
been used to form the ranked input mosaics, so the extra layers
simply contain redundant information already implicitly encoded
in the input layers and their relative order.

5.2 Training data
We train and test our network on a number of different scenes. Note
that in our experiments, we show results both with and without
images from the test scene being included in the training data. How-
ever, the actual results consist only of data samples – the novel
viewpoints – that were never seen in training.

In previous work [Ortiz-Cayon et al. 2015; Waechter et al. 2017],
input photos are used as ground truth images, in a held-out or leave-
one-out strategy for error evaluation. We adopt a similar approach,
but to succeed in training our CNN, we require a large number of
images with sufficient variety of scene content. For this, we collected
a total of 19 scenes from different sources: 7 scenes from Chaurasia
et al. [Chaurasia et al. 2013], 4 scenes from Hedman et al. [Hedman
et al. 2016], 1 scene from the Eth3D benchmark [Schöps et al. 2017],
and 7 new scenes which we have captured ourselves. Each scene
contains between 12 and 418 input images, with resolution varying
from 1228 × 816 to 2592 × 1944. There are 5 indoors scenes, and 5
scenes containing a significant amount of vegetaion. In total, we
have 2630 images, and we use data augmentation to mitigate the risk

Top-ranked Mosaic Second-ranked Mosaic

Third-ranked Mosaic Fourth-ranked Mosaic

Reference Image Deep-Blending Output

Fig. 10. Our network takes as input ranked mosaics generated from a set of
warped candidate views. For each pixel, the candidates are ranked based on
their expected blending contribution, and 4 color-image mosaics are formed
from the top 4 rankings. Example mosaics are shown in the first two rows.
The top right halves show the color mosaic, while the bottom left halves
show colormaps of the selection, with each input shown in a different color.
Weighted blending outputs from our network (bottom right) are trained by
minimizing their difference with real images (bottom left). Our network also
blends an RGB view of the global mesh (not shown).

of overfitting by taking random 256x256 crops of the images and
performing random rotations and horizontal/vertical flips. We use
90% of the images in each scene for training, leaving the remaining
10% as a validation set.

We also experimented with data augmentation for the mosaics
themselves, and generated mosaics with blend weights computed
for a different camera location. This did not ensure temporal smooth-
ness, but instead suppressed highlights.

5.3 Training loss
The goal of the training is to determine how well the held-out novel
view resembles the input photograph. We face two main challenges:
dealing with slight misalignments due to warping and encouraging
temporal coherence.

Since our geometry reconstruction is not perfect, we may never
obtain an accurate match between the warped input images and
the held-out ground truth. In particular, the surface may have slight
reconstruction error, and there can be an offset between the warped
mosaics and the reference photograph or differences in texture
resolution and stretch. Together, these effects mean that we cannot
form the reference photograph as a weighted average of the input

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:9

Deep Blending (Ours) Crop (Ours) [Hedman et al. 2016] [Buehler et al. 2001] [RealityCapture 2016]

Deep Blending (Ours) Crop (Ours) [Ortiz-Cayon et al. 2015] [Buehler et al. 2001] [RealityCapture 2016]

Deep Blending (Ours) Crop (Ours) [Ortiz-Cayon et al. 2015] [Buehler et al. 2001] [RealityCapture 2016]

Deep Blending (Ours) Crop (Ours) [Penner and Zhang 2017] [Buehler et al. 2001] [Ortiz-Cayon et al. 2015]

Deep Blending (Ours) Crop (Ours) [Ortiz-Cayon et al. 2015] [Buehler et al. 2001] [RealityCapture 2016]

Fig. 11. Results from 5 scenes. Left: Full novel view from our solution, followed by a crop using our method. The remaining three columns show previous
methods as in Fig. 2. In most cases, errors due to inaccurate geometry result in visual artifacts such as ghosting, incorrect edge reconstruction as well as blur.

layers. This makes training with an image loss such as L1 or SSIM
ill-conditioned.
Instead, we build on work developed for style transfer, where

“perceptual” image differences have proven their effectiveness, based
on pretrained VGG16 network features [Johnson et al. 2016]. For a
given novel image IN and a reference image IR , our loss L is:

L(IN , IR) = |IN − IR |+
|VGG16relu12(IN) − VGG16relu12(IR)|+

|VGG16relu22(IN) − VGG16relu22(IR)| (2)

where VGG16relu* are the feature activations at different scales of a
VGG16 network pretrained on ImageNet.

With the formulation above, the network is able to create high-
quality single frames. However, for difficult regions in the scene,
the network struggles to find a good solution and the weights tend
to oscillate from frame to frame. To disambiguate this case, we

encourage the network to produce temporally stable results with
an auxiliary loss, based on a small window of camera motion. As
training data, we generate small 2-frame clips, which start from a
reference camera pose and move in a random direction. To keep
camera motion relatively small, we set frame-to-frame displacement
to be 25% of the average baseline. During training, we run the
network twice to generate outputs for both the frames in the clip.

The final temporally consistent loss function we use is as follows:

LT (IN , IR) = L(I tN , IR) + 0.33 ∗ L(I t−1N ,Wf (I tN)), (3)

whereWf (I) is thewarped image I using optical flow. Optical flow is
estimated as the average flow of the 4 input mosaics, ignoring global
geometry. We can compute this flow exactly for each mosaic, since
we have the corresponding geometry and render using OpenGL.

We also tested a loss including image gradients, which in the-
ory should discourage seams due to color harmonization problems.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

257:10 • Hedman et al.

Deep Blending (Ours) Crop (Ours) [Penner and Zhang 2017] [Buehler et al. 2001] [RealityCapture 2016]

Deep Blending (Ours) Crop (Ours) [Ortiz-Cayon et al. 2015] [Buehler et al. 2001] [RealityCapture 2016]

Deep Blending (Ours) Crop (Ours) [Hedman et al. 2016] [Buehler et al. 2001] [RealityCapture 2016]

Fig. 12. Results continued, presentation as in Fig. 11. In some cases, our method can recover from large geometric errors (e.g., car in the middle row).

Fig. 13. Our deep blending network vs heuristic blending, both using our
refined per-view meshes. Left: Our full method, showing the difference in
quality due to Deep Blending. Right: Our heuristic blend cost (see Sec. 5.1).

However, this instead encouraged outliers and slowed down con-
vergence. We did not experiment with adversarial losses, which is
an interesting future work direction; however, maintaining tem-
poral smoothness would probably be very challenging. We also
experimented with a temporal window as input to the network.

Interestingly, this did not improve convergence, possibly because
the network is unable to correct the parallax between the inputs.

6 IMPLEMENTATION AND EVALUATION
We implemented our system in C++ andOpenGL, combinedwith the
C++ interface of TensorFlow [Abadi et al. 2015] for runtime blend
evaluation. Our rendering pipeline is based on InsideOut [Hedman
et al. 2016] with the depth component modification to the IBR cost
computation (see Sec. 5.1).
To maximize the pipeline’s potential for interactive rendering

times, we implemented custom TensorFlow operations that directly
copy the input and output OpenGL textures to and from the network
in on-device GPU transfers, making use of the OpenGL/CUDA in-
terop interface available in the CUDA version 9.0 library. A custom
CUDA kernel was implemented to increase the speed of 2D spa-
tial upsampling; all other network components used TensorFlow’s
native operations with cuDNN 7.1 [Chetlur et al. 2014].

6.1 Results and Comparisons
In Figs. 11 and 12, we show results from 8 scenes, comparing our
method with other end-to-end IBR systems:
RealityCapture: The textured mesh from [RealityCapture 2016].
Selective IBR: The superpixel IBR approach by [Ortiz-Cayon et al.

2015] using the RealityCapture mesh as input geometry.
ULR: Unstructured Lumigraph Rendering [Buehler et al. 2001]

with soft visibility [Eisemann et al. 2008] and the RealityCap-
ture mesh as the geometry proxy.

Soft3D: The novel view synthesis algorithm by [Penner and Zhang
2017], using their custom soft 3D reconstructions.

InsideOut: The indoor IBR system by [Hedman et al. 2016] using
their custom depth-sensor based 3D reconstructions.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:11

Except for InsideOut, which uses the original reconstructions with
depth-sensor data, all methods use the same camera registration
and calibration produced by COLMAP. The full set of videos with
paths from all these scenes and comparisons with other methods is
in supplemental material. We show Soft3D only in 4 scenes, as it
has difficulty handling the very unstructured capture of our data
and comparisons in more scenes would not be very informative.

Quantitative comparison for IBR is always a difficult endeavor.We
provide a quantitative comparison using the Virtual Rephotography
approach [Waechter et al. 2017], using the shiftable L1 error metric
of [Hedman et al. 2017]. For this, and all following quantitative
evaluations, we have used the images from paths of a subset of 5
scenes, namely CreepAttic, Museum-1, NightSnow (rows 1,4 and
6 in Fig. 11), DrJohnson (row 3 in Fig. 12), and Hugo-1 (Fig. 3). It
is important to note that this evaluation favors previous methods,
since most of the time images captured are quite close to other
input views (by definition, to provide overlap for SfM and MVS); our
method excels in viewpoints further from the inputs, but meaningful
rephotography would require capture of photos specifically for this
purpose. The results of this comparison are shown in Fig. 18.
For the results in Fig. 11 and 12, we included all scenes in the

training. We also show results with networks trained without the
scene being shown (Fig. 16). We see that there is little visible differ-
ence between the two, which is also confirmed by the numerical
results shown in Fig. 15 (right).

6.2 Evaluation of Deep Blending vs. Geometric Refinement
We evaluate the relative effect of each of our steps, namely deep
blending vs. our improved geometric refinement. We implemented
an IBR algorithm similar to [Hedman et al. 2016], with two variables:
InsideOut per-view refinement vs. our refinement, and InsideOut-
style blending using our depth-modulated cost (which we call heuris-
tic blending from now on) vs. Deep Blending, for a total of four con-
figurations. For a fair comparison with our refinement, InsideOut
refinement is performed using only the RealityCapture mesh.

In Fig. 13, we compare heuristic blending vs. deep blending using
our refinement, isolating the effect of blending only, and observe
there are several visible artifacts that are corrected by our solution.
In Fig. 14, we show the effect of using our refinement vs. InsideOut
refinement, but using Deep Blending for both, isolating the effect of
refinement only. We also show InsideOut refinement with heuristic
blending that is clearly worse; this is confirmed quantitatively in
the leave-one-out rephotography [Waechter et al. 2017] results in
Fig. 15. These graphs plot the “shiftable L1 error” [Hedman et al.
2017] – the minimum L1 distance for a 7×7 color patch around each
ground-truth image pixel, compared with all output patches that
have been shifted up to ±2 pixels in x and/or y around the source
pixel. Interestingly, the performance is similar in the three cases
where either or both of our improvements are used. This indicates
that while Deep Blending can correct for bad refinement for the
rephotography test (i.e., for views not too far from the input photos),
the relative effect of blending and refinement is equally important.
As can be seen in the supplemental material and video, the relative
visual importance of each can be scene- and context-dependent,
and our complete solution is generally better visually, especially far
from the input views.

Fig. 14. Different geometry refinement approaches with our deep blending
network. Top: Using the geometry refinement from [Hedman et al. 2016].
Bottom: Our solution, which better recovers thin structures.

0

0.25

0.5

50 75 100Samples (%)

Single scene

Hold-one-out

All scenes

0

0.25

0.5

50 75 100

R
ep

h
o

to
gr

ap
h

y
Er

ro
r

(S
h

if
ta

b
le

 L
1

)

Samples (%)

Heuristic blending (InsideOut refinement)

Heuristic blending (Our refinement)

Deep blending (InsideOut refinement)

Deep blending (Our refinement)

Fig. 15. Rephotography comparison, i.e., how well different approaches
can reconstruct held-out input images. The graphs show the cumulative
distribution of errors over five scenes (Creepy Attic, Dr Johnson, Museum-
1, Hugo-1, and Night Snow), i.e., the percentage of pixels (x-axis) with
an error smaller than a threshold (y-axis), starting at the median error.
Left, ablation:We compare our deep blending with a heuristic weighted
average, and our geometry refinement with the earlier refinement approach
from [Hedman et al. 2016]. Right, generalization (evaluated over the
same 5 scenes):We compare a single network trained on all 19 scenes with
(1) hold-one-out networks that never saw the test scene during training,
and (2) single-scene networks that only saw the test scene during training.

Fig. 16. Left: novel view computed with all scenes used for training, Right:
same view rendered with a network that never saw the scene during training.
The result is similar.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

257:12 • Hedman et al.

Fig. 17. Top Left: Full method, with the VGG loss. Top Right: Same view
without the VGG loss. Bottom Left: Frame t. Bottom Middle: Our full
method (10x temporal difference between frame t and t+1) using our full
method. Bottom Right: Our method, no temporal loss (10x temporal dif-
ference between frame t and t+1).

6.3 Network Evaluation
We also perform ablation tests on the learning process. In our sup-
plemental material, we provide a large number of videos showing
the performance for different ablations in data or method. We have
investigated several aspects:

• Training scenes. In Figs. 15-16 and supplemental material, we
show the effect of running our network in 5 scenes it did not
see during training (hold-one-out). The results are quite similar
to training with the scene. We also test the effect of only train-
ing with images from one scene (single-scene), which in Fig. 18
does not show a strong numerical difference, but tends to reduce
temporal stability (see supplemental material).

• Loss. In Fig. 17, we show the effect of our perceptual (VGG)
loss vs. an L1 loss. Our supplemental videos further show this
difference in performance. We also include results of our network
trainedwithout the temporal loss; these exhibit strong inter-frame
intensity flicker in many of the sequences.

• Image regression. We tested a variant of the network that di-
rectly regresses (predicts) the output image rather than blend
weights. Similarly to [Bako et al. 2017], we observe that directly
regressing the output image works well, but network convergence
is much slower.

• Number ofmosaics.We show supplementary results using only
the top 1 or 2 mosaics as network input. We observe diminishing
return with more mosaics – each additional mosaic contributes
to smaller details, particularly along surface boundaries. Having
more mosiacs does, however, lead to smoother view transitions.

• Training data size.We show supplemental videos after training
with a random 30% subset of our data. Surprisingly, the qualitative
performance is fairly constant. This is likely because the blend
weight prediction function has complex variation throughout an
image, meaning that even a reduced number of training images
will still well cover the space of blend weight idiosyncracies that
need to be learned.

6.4 Performance
We evaluate the runtime performance of our interactive rendering
pipeline at a resolution of 1280×720 px on a system with a 3.47 GHz
Intel Xeon processor and an NVIDIA GTX 1080Ti GPU. (Note that
the videos in our supplemental are rendered offline at a resolution
of 1920 × 1080 px.) Table 1 shows average per-frame execution
times of our interactive pipeline over several scenes. Runtimes are
specific to the scene and are not driven only by the deep blending
network component. For smaller scenes, especially indoor scenes,
our implementation achieves greater than 30fps performance, which
falls off gradually as scene complexity increases. For large outdoor
scenes, we observe that the primary bottleneck is in the voxel-wise
camera selection, which in our current implementation is tied to a
fixed-size spatial subdivision. An adaptive or hierarchical approach
is an interesting future direction for this issue.
Preprocessing times for our pipeline varied from scene to scene

but generally finished overnight. We treat network training sepa-
rately, which takes two days, but does not necessarily have to be
re-run for each new scene (see Figs. 15-16). Example processing
times for the Creepy Attic scene are shown in Table 2.

6.5 Limitations
Our method gracefully degrades when there is very little 3D ge-
ometry from the initial 3D reconstruction; we show an example in
Fig. 19. Our method will also tend to flicker when the differences
in exposure are very large and inconsistent (e.g., the Bridge scene
in the supplemental materials). The network occasionally creates
blur, typically in regions with missing geometry or where difficult
decisions need to be made (highlights, resolution mismatches etc.).
Nonetheless, in the vast majority of the 19 scenes, our method out-
performs all previous solutions, although in some cases one artifact
is traded for another (e.g., blur instead of seams). We discuss possible
avenues to address these limitations in future work, below.

7 CONCLUSIONS
We have presented Deep Blending for IBR, demonstrating that it is
possible to learn blending weights for free-viewpoint navigation at
interactive display rates.
In future work, we would like to address the problems outlined

above. To reduce blur, one possible avenue would be the use of an
adversarial loss [Isola et al. 2017]; it is unclear how well such an ap-
proach would deal with temporal coherence. To reduce flickering for
very large exposure inconsistencies would probably require an effec-
tive pre-processing step for color harmonization, while respecting
differences due to view-dependent materials.
Achieving real-time performance, especially in the context of

stereo viewing (i.e., at least 90 fps), requires performance improve-
ments. This can partly be addressedwith upgraded hardware: A dual-
GPU system would render the views for both eyes in parallel, and
next generation GPUs provide further speedups. There are several
possible avenues of research to bridge the remaining gap, e.g., using
fewer mosaics, more efficient networks architectures [Howard et al.
2017], model compression [Kim et al. 2015; Molchanov et al. 2016],
or porting the blending network to GLSL [Nalbach et al. 2017].

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:13

100/50 100/50100/50100/50

Fig. 18. Rephotography comparison, i.e., how well different approaches can reconstruct held-out input images. With the shiftable L1 difference [Hedman
et al. 2017], lower is better. The graphs show the cumulative distribution of errors, i.e., the percentage of pixels (x-axis) with an error smaller than a threshold
(y-axis), starting at the median error. Here, we see that some scenes are harder than others, and that our approach is effective for a higher % of pixels. In this
experiment, we only use hold-one-out networks that did not see the test scene during training.

ACKNOWLEDGMENTS
This research was financially supported by the Rabin Ezra schol-
arship fund, NSF CNS-1405847, NERC NE/P019013/1, and the EU
H2020 EMOTIVE project (http://www.emotiveproject.eu). We thank
Clément Godard for helpful input on network training and different
loss functions, Akash Bapat for conversations regarding depthmap
and global geometry improvements, and Adrien Bousseau for in-
sightful comments.

Table 1. Average runtimes (ms/frame) over 100 frames for our IBR system.

Non-network Total Non-network Total
Scene Runtime Runtime Scene Runtime Runtime

Museum-1 6.2 26.2 Hugo-1 14.1 35.6
Creepy Attic 7.1 26.8 Night Snow 15.3 33.0
Dr Johnson 12.4 33.6 Boats 19.7 47.6

Table 2. Preprocessing times for Creepy Attic (249 images at 1228 × 816)
using a 4-core Intel Core i7 processor and an NVIDIA Titan X GPU.

Component Runtime Component Runtime
COLMAP SfM 1h Depth map Refinement 0.75h
COLMAP MVS 5.25h Meshing 1.5h

RealityCapture MVS 0.5h Network Training 37h

Fig. 19. Left: From the rendering of the mesh, we see that part of the
geometry of the car is completely missing. Right: Despite significant visual
improvement, our method cannot hallucinate the missing geometry.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org.

Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,
Carlos Hernandez Esteban, Sameer Agarwal, and Steven M. Seitz. 2016. Jump:
Virtual Reality Video. ACM Transactions on Graphics (TOG) 35, 6 (2016).

Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, and Michael Wim-
mer. 2014. Large-scale point-cloud visualization through localized textured surface
reconstruction. IEEE Trans. Vis. Comput. Graphics 20, 9 (2014), 1280–1292.

Murat Arikan, Reinhold Preiner, and Michael Wimmer. 2016. Multi-Depth-Map Ray-
tracing for Efficient Large-Scene Reconstruction. IEEE Trans. Vis. Comput. Graphics
22, 2 (2016), 1127–1137.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-predicting con-
volutional networks for denoising Monte Carlo renderings. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 97.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (TOG) 28, 3 (2009), 24.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured lumigraph rendering. In SIGGRAPH.

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 30.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives for Deep
Learning. In Proceedings of the NIPS Workshop on Deep Learning and Representation
Learning.

Abe Davis, Marc Levoy, and Fredo Durand. 2012. Unstructured light fields. In Computer
Graphics Forum, Vol. 31. Wiley Online Library, 305–314.

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson de Aguiar,
Naveed Ahmed, Christian Theobalt, and Anita Sellent. 2008. Floating Textures.
Comp. Graph. Forum (2008).

Jihad El-Sana and Amitabh Varshney. 1999. Generalized view-dependent simplification.
In Computer Graphics Forum, Vol. 18. Wiley Online Library, 83–94.

Andrew Fitzgibbon, Yonatan Wexler, and Andrew Zisserman. 2005. Image-based
rendering using image-based priors. International Journal of Computer Vision 63, 2
(2005), 141–151.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. Deepstereo:
Learning to predict new views from the world’s imagery. In Computer Vision and
Pattern Recognition (CVPR). 5515–5524.

Yasutaka Furukawa and Jean Ponce. 2010. Accurate, Dense, and Robust Multi-View
Stereopsis. IEEE Trans. PAMI (2010).

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209–216.

Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M Seitz. 2007.
Multi-view stereo for community photo collections. In International Conference on
Computer Vision (ICCV).

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The
lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

257:14 • Hedman et al.

interactive techniques. ACM, 43–54.
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.

2015. DRAW: A recurrent neural network for image generation. arXiv preprint
arXiv:1502.04623 (2015).

Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. In European
Conference on Computer Vision (ECCV). Springer, 1–14.

Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D
photography. ACM Transactions on Graphics (TOG) 36, 6 (2017), 234.

Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable
inside-out image-based rendering. ACM Transactions on Graphics (TOG) 35, 6 (2016),
231.

Benno Heigl, Reinhard Koch, Marc Pollefeys, Joachim Denzler, and Luc Van Gool. 1999.
Plenoptic modeling and rendering from image sequences taken by a hand-held
camera. In Mustererkennung 1999. Springer, 94–101.

Heiko Hirschmuller. 2006. Stereo Vision in Structured Environments by Consistent
Semi-Global Matching. In Computer Vision and Patter Recognition (CVPR). 2386–
2393.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint
abs/1704.04861 (2017).

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-To-Image
Translation With Conditional Adversarial Networks. In CVPR.

Michal Jancosek and Tomás Pajdla. 2011. Multi-view reconstruction preserving weakly-
supported surfaces. In Computer Vision and Pattern Recognition (CVPR). IEEE, 3121–
3128.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision
(ECCV). Springer, 694–711.

Nima Khademi Kalantari and Ravi Ramamoorthi. 2017. Deep high dynamic range
imaging of dynamic scenes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 144.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
based view synthesis for light field cameras. ACM Transactions on Graphics (TOG)
35, 6 (2016), 193.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun
Shin. 2015. Compression of Deep Convolutional Neural Networks for Fast and Low
Power Mobile Applications. arXiv preprint abs/1511.06530 (2015).

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 78.

Johannes Kopf, Michael F. Cohen, and Richard Szeliski. 2014a. First-person Hyper-lapse
Videos. ACM Transactions on Graphics (TOG) 33, 4, Article 78 (July 2014), 10 pages.

Johannes Kopf, Michael F Cohen, and Richard Szeliski. 2014b. First-person hyper-lapse
videos. ACM Transactions on Graphics (TOG) 33, 4 (2014), 78.

Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. 2007. Efficient multi-view
reconstruction of large-scale scenes using interest points, delaunay triangulation
and graph cuts. In International Conference on Computer Vision (ICCV). IEEE, 1–8.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. ACM, 31–42.

Wenfeng Li and Baoxin Li. 2008. Joint Conditional Random Field of multiple views
with online learning for image-based rendering. In Computer Vision and Pattern
Recognition. IEEE.

Zhengqi Li andNoah Snavely. 2018. MegaDepth: Learning Single-ViewDepth Prediction
from Internet Photos. In Computer Vision and Pattern Recognition (CVPR).

David Luebke and Carl Erikson. 1997. View-dependent simplification of arbitrary
polygonal environments. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,
199–208.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016. Pruning
Convolutional Neural Networks for Resource Efficient Transfer Learning. arXiv
preprint abs/1611.06440 (2016).

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias
Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space
Shading. 36, 4 (2017).

Rodrigo Ortiz-Cayon, Abdelaziz Djelouah, and George Drettakis. 2015. A Bayesian
Approach for Selective Image-Based Rendering using Superpixels. In International
Conference on 3D Vision (3DV). Lyon, France. https://hal.inria.fr/hal-01207907

Philippe Pébay and Timothy Baker. 2003. Analysis of triangle quality measures. Math.
Comp. 72, 244 (2003), 1817–1839.

Eric Penner and Li Zhang. 2017. Soft 3D reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 235.

Sergi Pujades, Frédéric Devernay, and Bastian Goldluecke. 2014. Bayesian view synthe-
sis and image-based rendering principles. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3906–3913.

Kari Pulli, Hugues Hoppe, Michael Cohen, Linda Shapiro, Tom Duchamp, and Werner
Stuetzle. 1997. View-based rendering: Visualizing real objects from scanned range
and color data. In Rendering techniques? 97. Springer, 23–34.

CapturingReality RealityCapture. 2016. RealityCapture. http://capturingreality.com

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-assisted Intervention (MICCAI). Springer, 234–241.

Daniel Scharstein and Richard Szeliski. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of Computer
Vision 47, 1-3 (2002), 7–42.

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In European
Conference on Computer Vision (ECCV).

Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad
Schindler, Marc Pollefeys, and Andreas Geiger. 2017. A Multi-View Stereo Bench-
mark with High-Resolution Images and Multi-Camera Videos. In Computer Vision
and Pattern Recognition (CVPR).

Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren Ng.
2017. Learning to synthesize a 4d rgbd light field from a single image. In International
Conference on Computer Vision (ICCV), Vol. 2. 6.

Benjamin Ummenhofer and Thomas Brox. 2017. Global, Dense Multiscale Reconstruc-
tion for a Billion Points. International Journal of Computer Vision 125, 1 (2017),
82–94.

Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes Kopf, and
Michael Goesele. 2017. Virtual rephotography: Novel view prediction error for 3D
reconstruction. ACM Transactions on Graphics (TOG) 36, 1 (2017), 8.

Oliver Woodford and Andrew W Fitzgibbon. 2005. Fast image-based rendering using
hierarchical image-based priors. In BMVC, Vol. 1. 260–269.

Oliver J Woodford, Ian D Reid, and AndrewW Fitzgibbon. 2007. Efficient new-view syn-
thesis using pairwise dictionary priors. In Computer Vision and Pattern Recognition
(CVPR). IEEE, 1–8.

Oliver J Woodford, Ian D Reid, Philip HS Torr, and Andrew W Fitzgibbon. 2006. Fields
of Experts for Image-based Rendering.. In BMVC, Vol. 3. 1109–1108.

Ke Colin Zheng, Alex Colburn, Aseem Agarwala, Maneesh Agrawala, David Salesin,
Brian Curless, and Michael F Cohen. 2009. Parallax photography: creating 3d
cinematic effects from stills. In Proceedings of Graphics Interface 2009. Canadian
Information Processing Society, 111–118.

Ke Colin Zheng, Sing Bing Kang, Michael F Cohen, and Richard Szeliski. 2007. Layered
depth panoramas. In Computer Vision and Pattern Recognition (CVPR). IEEE, 1–8.

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. 2016.
View synthesis by appearance flow. In European Conference on Computer Vision
(ECCV). Springer, 286–301.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-
image translation using cycle-consistent adversarial networks. 1 (2017).

C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard
Szeliski. 2004. High-quality video view interpolation using a layered representation.
In ACM transactions on graphics (TOG), Vol. 23. ACM, 600–608.

APPENDIX A DEFINITION OF DEPTH MAP
UNCERTAINTY

COLMAP runs in two stages: photometric and geometric. The photo-
metric stage only optimizes photoconsistency during reconstruction.
This results in outliers and noise for ambiguous regions such as
textureless areas. In the geometric stage, a joint optimization for
photoconsistency is performed, but the resulting depth maps are
tested so they agree with each other in space. This correctly re-
moves ambiguous regions, but as observed Li and Snavely [2018]
(Supplemental Fig 1), it sometimes erodes foreground objects.

We solve this problem by considering a pixel to be uncertain if
its photometric depth and geometric depth consistency differs by
more than 5%. As a final step, we smooth our uncertainty definition,
by applying a small guided filter [He et al. 2010] to the thresholded
image (10 pixels wide, with a threshold of 2%).

APPENDIX B OCCLUSION EDGE CUTTING
THRESHOLD

To detect pixel-precise occlusion edges we need a local measure
that is scale invariant, sensitive to strong gradients in depth maps
and that measures geometry quality. The aspect ratio of a triangle,
defined by q(t) = ∥t ∥∞

h(t) where ∥t ∥∞ represents the length of the

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

https://hal.inria.fr/hal-01207907
http://capturingreality.com

Deep Blending for Free-Viewpoint Image-Based Rendering • 257:15

longest side and h(t) the height of the triangle with respect to this
side, is such a measure. For each pixel we consider the quad formed
by neighbors. This quad can be meshed by two configurations of two
triangles.We define ρ as being theminimizer over the configurations
of the maximum of q(t) between the two triangles.

This measure guarantees good occlusion edge detection and good
geometry in most cases as pixels with a large ρ correspond to
stretched triangles configuration with inhomogeneous depth varia-
tion. Nonetheless for surfaces seen at grazing angle this measure
alone, as the ones used in InsideOut [Hedman et al. 2016] or Ca-
sual3D [Hedman et al. 2017], leads to over-detection. To overcome
this shortcoming we modulate ρ by:

dP =max(0.1, |cos(®v · ®n)|)
where v is the view direction. We also modulate ρ by a second term

dD =min(2,max(0.5,D/Dmean))
whereD is disparity. This term allows to cut more in the background
as we have less certainty about the estimated depth and our method
is more robust to the lack of per-view geometry than to false ge-
ometry. Finally occlusion edges pixels are defined as those with
γ = ρ ∗dP ∗dD larger than the threshold τ = 25 using a hysteresis
threshold to avoid instabilities for edges with γ close to τ .

APPENDIX C DEPTH COMPONENT FOR IBR COST
Similarly to a standard fuzzy depth test [Hedman et al. 2016], we
first compute the depth dmin of the closest surface for each pixel.
Our depth cost reaches its minimum depth at dmin, increasing lin-
early with the depth di of the current sample. To ensure that the
background will not be completely discarded in the presence of
floating geometry, we saturate our cost at a distance of 2dmin. More
specifically,

wdepth = clamp[0,1]
(
di − dmin
dmin

)
(4)

ACM Transactions on Graphics, Vol. 37, No. 6, Article 257. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Motivation and Prior work
	2.1 Geometry Reconstruction and Occlusion Edges
	2.2 Image-Based Rendering and Blending
	2.3 Learning for IBR and Blending

	3 Overview
	4 High-Quality Per-View Meshes for Deep IBR
	4.1 Per-View Geometry Refinement
	4.2 Occlusion Edges and Meshing Simplification

	5 Learning to Blend
	5.1 Network Architecture and Rendering Algorithm
	5.2 Training data
	5.3 Training loss

	6 Implementation and Evaluation
	6.1 Results and Comparisons
	6.2 Evaluation of Deep Blending vs. Geometric Refinement
	6.3 Network Evaluation
	6.4 Performance
	6.5 Limitations

	7 Conclusions
	Acknowledgments
	References
	A Definition of Depth map Uncertainty
	B Occlusion Edge Cutting Threshold
	C Depth Component for IBR Cost

