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Fig. 1. Our algorithm reconstructs a 3D photo, i.e., a multi-layered panoramic mesh with reconstructed surface color, depth, and normals, from casually
captured cell phone or DSLR images. It can be viewed with full binocular and motion parallax in VR as well as on a regular mobile device or in a Web browser.
The reconstructed depth and normals allow interacting with the scene through geometry-aware and lighting effects.

We present an algorithm that enables casual 3D photography. Given a set of

input photos captured with a hand-held cell phone or DSLR camera, our

algorithm reconstructs a 3D photo, a central panoramic, textured, normal

mapped, multi-layered geometric mesh representation. 3D photos can be

stored compactly and are optimized for being rendered from viewpoints

that are near the capture viewpoints. They can be rendered using a standard

rasterization pipeline to produce perspective views with motion parallax.

When viewed in VR, 3D photos provide geometrically consistent views for

both eyes. Our geometric representation also allows interacting with the

scene using 3D geometry-aware effects, such as adding new objects to the

scene and artistic lighting effects.

Our 3D photo reconstruction algorithm starts with a standard structure

from motion and multi-view stereo reconstruction of the scene. The dense

stereo reconstruction is made robust to the imperfect capture conditions

using a novel near envelope cost volume prior that discards erroneous near

depth hypotheses. We propose a novel parallax-tolerant stitching algorithm

that warps the depth maps into the central panorama and stitches two

color-and-depth panoramas for the front and back scene surfaces. The two

panoramas are fused into a single non-redundant, well-connected geometric

mesh. We provide videos demonstrating users interactively viewing and

manipulating our 3D photos.
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1 INTRODUCTION
Imagine if you could capture any place and digitally preserve it in a

way that allows you or your friends to virtually immerse themselves

in the scene and re-experience the sensation of being there. Imagine

this was nearly as easy as taking a picture today, using a phone

or camera you already own. Such technology would be useful for

capturing and sharing spaces you visit with your friends, so they

feel more connected to you, or preserving your personally treasured

places forever as digital memories.

In this paper, we present technology that enables casual 3D pho-
tography, moving us closer towards fulfilling this vision. A person

captures a scene by moving a hand-held camera sideways at about

a half arm’s length, while taking a series of still images (Fig. 1, left),

possibly with the help of a dedicated capture app. The capture is

unstructured, i.e., the motion does not have to be precisely executed,
and takes just seconds to a few minutes, depending on the desired

amount of coverage. Given this input, our algorithm automatically

reconstructs a 3D photo, i.e., a textured, panoramic, multi-layered

geometric mesh representation (Fig. 1, middle).

The most immersive way to enjoy a 3D photo is in VR. Using the

reconstructed geometry, we render stereoscopic perspective views
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that correctly react to tracked user head motion, i.e., provide binoc-

ular and motion-parallax depth cues. On non-VR displays such as

smart phones, we can still show motion parallax by rendering from

viewpoints on a sphere fitted to the estimated input camera loca-

tions. Our geometric representation enables interacting with the 3D

photo through geometry-aware and artistic lighting effects (Fig. 1,

right).

We specifically designed our representation and reconstruction

algorithms for as “casual” as possible capture. We do not require

the user to capture a scene from all angles, but just an arc around a

single viewpoint. As a result, our 3D photos are most suited for an

“armchair exploration” scenario. They look best when viewed from

within a volume around the viewpoints that were spanned during

capture.

An alternative representation often used for VR capture is the

omnidirectional stereo representation (ODS) for capturing and ren-

dering stereoscopic panoramic images and videos, which uses sep-

arate 360
◦
panoramas for the left and right eye [Peleg et al. 2001].

These panoramas are captured either by sweeping a regular camera

around a ring [Peleg et al. 2001; Richardt et al. 2013] or from a ring

of overlapping video cameras [Anderson et al. 2016; Facebook 2016].

ODS provides a binocular depth cue by delivering different images

to the eyes, but does not provide motion parallax when the user

turns or moves their head. The rendered views are not in a linear

perspective projection and exhibit distortions such as bent scene

lines and incorrect stereo parallax away from the equator. These

artifacts are described in more detail in Section 2. Our system pro-

vides binocular and motion parallax depth cues, and therefore a

better sense of immersion. Another important difference is that any

incorrectly reconstructed geometry in a 3D photo will still be ren-

dered consistently for both eyes, while artifacts in an ODS produce

inconsistent views that can cause motion sickness.

Multi-view stereo (MVS) [Furukawa and Hernández 2015] algo-

rithms reconstruct a dense and detailed 3D geometric model from a

set of images. This mature field in computer vision has seen over

30 years of research, and several high quality and actively main-

tained software packages implementing state-of-the-art algorithms

are available (see Section 6.2). However, applying these algorithms

directly in our scenario produces unsatisfactory results, for the fol-

lowing reasons: (1) our casually captured images violate many com-

mon assumptions in MVS algorithms leading to geometric artifacts:

they are captured with a narrow baseline, and our scenes are often

not fully static and contain large textureless areas; (2) the geometry

produced by MVS algorithms is not optimized for a specific view-

point and often lacks completeness and detail. Our approach uses

state-of-the-art reconstruction algorithms as core components, but

through several technical innovations, we make them work robustly

in our scenario. We provide extensive comparisons against several

MVS packages in Section 6.2 and the supplementary material.

The reconstruction of a 3D photo starts with estimating input cam-

era poses and a sparse scene model using an off-the-shelf structure-

from-motion algorithm. This is followed by our three major techni-

cal innovations.

(1) A novel near-envelope cost volume prior is used to improve the

robustness of MVS depth map reconstruction by discarding

erroneous nearby depth hypotheses.

(2) A novel parallax-tolerant stitching algorithm warps the depth

maps into a central panoramic domain and stitches two panora-

mas: one for the front and one for the back (occluded) surface

in the scene. Each map is reconstructed in the original image

domain to achieve good alignment of image and depth edges.

These are then rendered with a regular and an inverted z-test

to produce front and back surface warps, which are subse-

quently stitched into corresponding front and back surface

panoramas.

(3) A novel two-layer fusion algorithm that merges the front

and back surface panoramas into a consistent, two-layered,

textured geometric mesh: the 3D photo.

Our 3D photo representation can be rendered on any modern

platform using standard graphics engines. The reconstruction qual-

ity is sufficient for moderate viewpoint changes, roughly within the

volume spanned by the captured images. We have experimented

with a variety of playful geometry-aware and lighting effects that

make use of the reconstructed scene geometry.

We have applied our algorithm to numerous 3D photos captured

with DSLRs and cell phone cameras. Among these are indoor and

outdoor as well as man-made and natural scenes. We compare our

3D photos extensively with results obtained with existing state-of-

the-art reconstruction algorithms, and provide quantitative analysis

using the Virtual Rephotography evaluation method [Waechter et al.

2017]. In the supplementary material, we provide datasets consisting

of input images, results, and intermediate algorithm stage outputs

for all of our scenes, as well as the results and rephotography error

maps for 16 variants of competing methods.

2 PREVIOUS WORK
Our work builds on a long tradition of image-based modeling and

rendering, omnidirectional stereo, panoramic image stitching, multi-

view stereo and free-viewpoint video, photogrammetry, surface

normal estimation, and relighting. In this section, we highlight

some of the related work in these areas.

Omnidirectional Stereo: Omnidirectional stereo encompasses a

class of techniques for stitching together a pair of left-eye and right-

eye panoramic images [Anderson et al. 2016; Ishiguro et al. 1990;

Peleg et al. 2001; Richardt et al. 2013]. The original techniques for

generating such images used strips from moving camera images

to create the panoramic images, using either mechanical rotation

[Ishiguro et al. 1990; Peleg and Ben-Ezra 1999] or hand-held images

[Google 2015; Richardt et al. 2013; Zhang and Liu 2015]. More re-

cent systems enable the capture of stereo panoramic videos using

multiple cameras arranged in a ring [Anderson et al. 2016; Facebook

2016].

Unfortunately, omnidirectional stereo images have a number of

drawbacks [Anderson et al. 2016], particularly when applied to full

spherical images. These include:

(1) non-linear perspective: straight lines in the scene are rendered

as bent;

(2) unnatural non-rigid motion: the scene appears to swim or

bend above and below the equator as the viewer turns their

head;

(3) the lack of realistic motion parallax as the head is turned;

ACM Transactions on Graphics, Vol. 36, No. 6, Article 234. Publication date: November 2017.



Casual 3D Photography • 234:3

(4) incorrect stereo parallax away from the equator, most no-

ticeable as the distance to the floor appearing “at infinity”,

resulting in unpleasant vertigo;

(5) the inability to tilt the head sideways and obtain correct binoc-

ular parallax;

(6) un-specified behavior at the poles: a simple 180 vertical sweep

leaves gaps.

There are some other stitching methods that are not specifically

designed for omnistereo but general stereoscopic image pairs. Luo

et al. [2012] describe a method for cloning a manually specified

selection from one stereoscopic image to another, and adjusting the

colors and disparities through iterative gradient-domain blending.

Parallax-tolerant panorama stitching: Some methods warp input

images to stitch artifact-free monocular panoramas [Lin et al. 2016;

Shum and Szeliski 1998; Zaragoza et al. 2013; Zhang and Liu 2014].

Recent work[Zhang and Liu 2015] demonstrates that this approach

also extends to omni-directional stereo. However, this line of work

has not yet produced explicit 3D geometry, making them unable to

produce head-motion parallax in VR.

Panoramas with Depth: An alternative to generating a left-right

pair of panoramic images is to augment a traditional stitched panora-

mic image with depth information [Im et al. 2016]. However, simply

adding a single depth channel to a panorama is not sufficient, be-

cause viewpoint changes can lead to issues at depth discontinuities,

i.e., reveal long stretched triangles or holes.

Zheng et al. [2007] create a layered depth panorama from multi-

ple overlapping images using a cylinder-sweep multi-view stereo

(MVS) algorithm. One problem with Zheng et al’s approach is that

their layers are not connected, which prevents their algorithm from

reproducing sloped surfaces. In addition, our approach of first com-

puting per-image depth maps allows us to use the original images

as references to achieve better edge alignment, and our stitching

step can hide MVS artifacts.

Thatte et al. [2016] describe a representation rendering for ODS

with depth and sketch out capturing and rendering algorithms, but

mostly demonstrate their system with synthetic data and a simple

“proof-of-concept” captured scene, and leave the question of reliable

depth estimation open.

SLAM and depth sensors: Simultaneous Localization and Mapping

(SLAM) methods are able to reconstruct hand-held video [Engel

et al. 2016; Mur-Artal and Tardós 2016]. The sparse or semi-dense

reconstructions created by these methods are useful for render-

ing augmented reality overlays onto video, but more geometry- or

occlusion-aware effects such as the virtual water surface (Figure 1)

or virtual viewpoint changes require dense reconstructions. Dense

SLAM methods [Izadi et al. 2011] usually rely on depth sensor in-

put. [Hedman et al. 2016] use a combination of depth sensors and

multi-view stereo in an image-based rendering system that repro-

duces view-dependent effects and allows for a freely moving camera.

However, their scene representation is expensive to render and this

system requires elaborate, indoor-only capture.

Multi-view Stereo and Free-viewpoint Video: Multi-view stereo

algorithms produce depth maps or surface meshes by matching mul-

tiple overlapping images [Seitz et al. 2006]. Recent examples of such

papers include [Fuhrmann et al. 2014; Furukawa and Ponce 2010;

Galliani et al. 2015; Im et al. 2016; Jancosek and Pajdla 2011; Langguth

et al. 2016; OpenMVS 2016; Schönberger et al. 2016; Vogiatzis et al.

2007]. Multi-view stereo algorithms are used in commercial pho-

togrammetric tools for 3D reconstruction of VR scenes [Realities

2017; Valve 2016]. They are also used to produce 3D proxies that can

be used in image-based rendering applications [Buehler et al. 2001;

Chaurasia et al. 2013; Debevec et al. 1996]. A related line of work

aims to build 3D models from multiple video streams, which enables

the interactive viewing of free-viewpoint video (see [Anderson et al.

2016] for some references).

However, applying these algorithms directly in our scenario yields

unsatisfactory results:

(1) Our uncontrolled and imperfect captures typically exhibit a

combination of geometric deformations, appearance changes,

and slight scene motion. Under these conditions MVS algo-

rithms produce a variety of artifacts, such as erroneous depth

or “flying” pieces of geometry.

(2) The reconstructions are not designed to be viewed from a

single view point. The geometric details can appear blobby

and not well aligned with image edges.

Flynn et al. [2016] provide a nice end-to-end system for image-

based reconstruction and rendering using deep learning. How-

ever, the rendering speed is slow, on the order of minutes per

displayed frame.

(3) Most algorithms rely on confidence measures that relate a

scene point’s depth to the baseline of its observing cameras.

As a result, many algorithms do not reconstruct far away

geometry, where the confidence goes to zero.

We provide an extensive comparative evaluation with several state-

of-the-art MVS systems in Sec. 6.2.

Single-Image CNN Depth: Recent work attempts to estimate a

depthmap from a single image using deep learning techniques [Eigen

et al. 2014; Godard et al. 2017; Ummenhofer et al. 2017]. This is a

very promising line of research, but the results have not yet reached

the quality of multi-view stereo. Another problem is that these

networks often do not generalize well beyond the specific image

categories they have been trained on.

Light Field Capture: Several companies provide commercial solu-

tions for capturing light fields for enabling motion parallax in VR,

for example Lytro Immerge
1
and OTOY

2
. However, these solutions

require expensive hardware and target professional users while we

are interested in methods that are suitable and affordable for casual

users.

Normal Maps and Lighting: Some MVS algorithms use photo-

consistency to explicitly compute normals during reconstruction

[Furukawa and Ponce 2010; Galliani et al. 2015; Goesele et al. 2007;

Schönberger et al. 2016]. While these normals agree well with the ge-

ometry, they are seldom of high enough quality to support lighting

effects. One can improve the normals of 3D reconstruction using illu-

mination cues, either as a post-process [Wu et al. 2011] or by explic-

itly incorporating them into the reconstruction process [Langguth

et al. 2016].

1
https://www.lytro.com/

2
https://home.otoy.com/otoy-demonstrates-first-ever-light-field-capture-for-vr/
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Fig. 2. A breakdown of the 3D photo reconstruction algorithm into its six stages, with corresponding inputs and outputs: (a) Capture and pre-processing,
Sec. 4.1; (b) Sparse reconstruction, Sec. 4.2; (c) Dense reconstruction, Sec. 4.3; (d)Warping into a central panorama, Sec. 4.4.1; (e) Parallax-tolerant stitching,
Sec. 4.4.2; (f) Two-layer fusion, Sec. 4.4.3.

In this paper, our goal is not to explicitly compute precise normals,

but rather to generate plausible ones, sufficient for artistic lighting

effects. Therefore, instead of estimating full lighting and reflectance

distributions [Barron and Malik 2015; Debevec et al. 2004; Duchêne

et al. 2015], we use perceptually plausible relighting techniques

[Karsch et al. 2011; Khan et al. 2006] to hallucinate detail normals,

which we combine with a smooth estimated base normal field.

3 OVERVIEW
One of our primary design goals is to make the 3D photo capture

process easy for inexperienced users: the capture should be hand-

held, should not take too long, and should be captured with an

existing, low-cost camera. These requirements influenced many of

the algorithmic design decisions further down the pipeline.

The input to our reconstruction algorithm is a set of captured

photos. We do not require them to be taken in any particular way, as

long as they contain sufficient parallax and overlap to be registered

by a standard structure from motion algorithm. In practice, it works

best to capture while moving the camera on a sphere of about half

arm’s length radius. While we captured the images manually to

produce the results in this paper, we envision a dedicated capture

app could further simplify and speed up the process.

We represent a 3D photo in a single-viewpoint panoramic projec-

tion that is discretized into a pixel grid. While we use an equirectan-

gular projection in our representation, other sensible choices, such

as a cube map, would also be possible. Every pixel can hold up to two

layers of “nodes” that store RGB radiance, normal vector, and depth

values. This format resembles layered depth images [Shade et al.

1998]. However, in addition to the layered nodes, we also compute

and store the connectivity between and among the two layers, in a

manner similar to that of [Zitnick et al. 2004].

Our representation has several advantages: (1) the panoramic

domain has an excellent resolution trade-off for rendering from a

specific viewpoint, since it provides automatic level-of-detail where

further away geometry is represented more coarsely than nearby

features; (2) it can be stored compactly using standard image coding

techniques and tiled for network delivery; (3) the two layers provide

the ability to represent color and geometric details at disocclusions;
(4) the connectivity enables converting the 3D photo into a dense

mesh that can be rendered without gaps and easily simplified for

low-end devices using standard techniques.

Our 3D photo reconstruction algorithm starts from a set of casu-

ally captured photos (Sec. 4.1, Fig. 2a) and uses an existing structure

from motion algorithm to estimate the camera poses and a sparse

geometric representation of the scene (Sec. 4.2, Fig. 2b). Our techni-

cal innovations concentrate in the following three stages:

Dense reconstruction (Sec. 4.3 / Fig. 2c). Taking the sparse re-

construction as a starting point, we first compute complete depth

maps for the input images. We propose a novel prior, called the

near envelope, that constrains the depth using a conservatively but

tightly estimated lower bound. This prior results in highly improved

reconstructions in our setting.

Parallax-tolerant stitching (Sec. 4.4.1-2 / Fig. 2d-e). The next goal is
to merge the depth images into the final representation. We forward-

warp the depth images into the panoramic domain, for each image

generating a front warp using a standard depth test and a back warp
using an inverted depth test.

Two-Layer Fusion (Sec. 4.4.3 / Fig. 2f). Next, we merge these im-

ages into a front and back stitch, respectively, by solving a MRF

problem. These two stitches are finally combined into the two-layer

3D photo representation using an algorithm that resolves connectiv-

ity among the layers, removes redundancies, and hallucinates new

color and depth data in unobserved areas.

While our reconstructed 3D photo geometry is sufficient even for

large viewpoint changes, when adding synthetic lighting and shad-

ing to the scene, the illusion is quickly destroyed, as the surface

normal maps required for lighting effects are highly sensitive to even

slight geometric errors. Similar to previous work [Khan et al. 2006]

we resolve this issue by embossing intensity-hallucinated detail
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onto a coarse base normal map derived from smoothing the stitched

geometry. The resulting normal map is not real but it contains plau-
sible normals that enable artist-driven lighting effects (full-blown

relighting is beyond the scope of this paper).

4 3D PHOTO RECONSTRUCTION
4.1 Capture and Pre-processing
Most of our scenes were captured with a mid-range Canon EOS

6D DSLR with a 180
◦
fisheye lens. To achieve nearly full 360×180◦

coverage, we captured two rings while pointing the camera slightly

up and down, respectively. We fixed the exposure and captured

about 25 input images on each ring. We preprocessed the RAW

images in Adobe Lightroom to automatically white balance, denoise,

and remove color fringing. We also cropped out the circular image

region in the fisheye images, leaving about 160
◦×107◦ field-of-view

(FOV).

We also experimented with capturing with a Samsung Galaxy S7

smart phone. Since the field-of-view is significantly narrower, we

only captured partial panoramas, taking about 4×4 images on a grid.

We used a single fixed exposure for each cell phone scene. This type

of capture takes on the order of 30 seconds.

4.2 Sparse Reconstruction
We used the COLMAP structure from motion package [Schönberger

et al. 2016] to recover the intrinsic and extrinsic camera parameters,

the pose for each image, and a sparse point cloud representation of

the scene geometry. We left most COLMAP options at their default,

except for setting the camera model and initializing the focal length

(see supplementary document for details). COLMAP also outputs

undistorted rectilinear images of about 110
◦×85◦ and 65◦×50◦ FOV

for the DSLR and cell phone camera, respectively, which we used

for all subsequent processing steps.

4.3 Dense Reconstruction
Our first goal is to densify the reconstruction by computing a dense

depth map for each input image using MVS. Unfortunately, our cap-

ture process breaks many common assumptions of these algorithms:

(1) our baseline is narrow compared to the scene scale, making esti-

mation of far geometry unreliable; (2) many of our scenes are not

fully static and contain, for example, swaying trees and moving

cars; (3) many scenes contain large textureless regions, such as sky

or walls. These issues make MVS unreliable in the affected areas.

In fact, most algorithms use some internal measure of confidence

and drop pixels that are deemed unreliable, resulting in incomplete

reconstructions. If they are forced to return a complete depth map,

however, it is usually erroneous and/or noisy in those areas.

We solve this problem by introducing a novel near envelope recon-
struction prior. The idea behind the prior is to propagate a conserva-

tive lower depth bound from confident to the less confident pixels.

The prior effectively discards a large fraction of erroneous near-

depth hypotheses from the cost volume, and causes the optimizer

to reach a better solution.

4.3.1 Plane-sweep MVS Baseline. The baseline for our near en-
velope prior results is a state of the art plane-sweep MVS algorithm,

which we describe briefly in this section. Please refer to the supple-

mentary document for full implementation details.

Like prior work [Scharstein and Szeliski 2002], we treat depth

estimation as an energy minimization problem. Let i be a pixel and
ci its color. We optimize the pixel depths di by solving the following
problem,

argmin

d

∑
i
Edata(i) + λsmooth

∑
(i, j)∈𝒩

Esmooth(i, j) , (1)

which consists of a unary data term and a pairwise smoothness

term defined on a four-connected grid, λsmooth = 0.25 balances their
contributions. The smoothness term is the product of a color- and a

depth-difference cost,

Esmooth(i, j) = wcolor
(
ci , c j

)
wdepth

(
di ,dj

)
, (2)

that encourages the depth map to be smooth wherever the image

lacks texture (refer to the supplementary document for details). Our

baseline data term consists only of a confidence-weighted photo-

consistency term,

Edata(i) = wphoto(i)Ephoto(i) , (3)

which measures the agreement in appearance between a pixel and

its projection into multiple other images (full details for all terms

are provided in the supplementary document).

We discretize the potential depth labels and use the plane-sweep

stereo algorithm [Collins 1996] to build a cost volumewith 220 depth

hypotheses for each pixel. While this restricts us to reconstructing

discrete depths without normals, it has the advantage that we can

extract a globally optimized solution using an MRF solver, which

can often recover plausible depth for textureless regions using its

smoothness term. We optimize the MRF at a reduced resolution

using the FastPD library [Komodakis and Tziritas 2007] for perfor-

mance reasons. We then upscale the result to full resolution with a

joint bilateral upsampling filter [Kopf et al. 2007], using a weighted

median filter [Ma et al. 2013] instead of averaging to prevent intro-

ducing erroneous middle values at depths discontinuities.

4.3.2 Near Envelope. As mentioned before, most existing MVS

algorithms, including the one described in Section 4.3.1, do not pro-

duce good results on our data. We have tried a variety of available

commercial and academic algorithms (Sec. 6.2); Fig. 3 and Fig. 5b

provide representative results. As can be seen, near-depth hypothe-

ses are noisy, because these points are seen in fewer images and

the photo-consistency measure is therefore less reliable. This makes

MVS algorithms more likely to fall victim to common stereo pitfalls,

such as: repeated structures in the scene, slight scene motion, or

materials with view-dependent (shiny) appearance.

The idea behind the near envelope is to estimate a conservative

but tight lower bound ni for the pixel depths at each pixel. We use

this boundary to discourage nearby erroneous depths by augment-

ing the data term in Eq. 3 with an additional cost term,

Enear(i) =

{
λnear if di < ni

0 otherwise,

(4)

that penalizes reconstructing depths closer than the near envelope

(λnear = 1). The near envelope effectively prunes a large fraction of

the cost volume, which makes it easier to extract a good solution.

To compute the near envelope, we first identify pixels with reliable

depth estimates to serve as anchors (Fig. 4a-d). We propagate their

depths to the remaining pixels using a color affinity smoothness
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(a) Input view (b) MRF (c) PMVS

[Furukawa and Ponce 2010]

(d) MVE

[Fuhrmann et al. 2014]

(e) COLMAP 2.1

[Schönberger et al. 2016]

(f) MRF + NE

(ours)

Fig. 3. Existing state-of-the-artMVS algorithms (b-e) often produce incomplete and noisy depthmaps for our casually captured data. Injecting our near-envelope
prior into the MRF baseline algorithm shown in (b) produces superior results (f).

(a) WTA depth (b) Inconsistent visibility

(GC filter)

(c) Sparse noise

(small median)

(d) Big floaters

(large bilateral median)

Pruning unrelieable pixels from WTA depth

(e) Smooth propagation (f) Final near envelope

Fig. 4. The near envelope construction starts with a cheap to compute winner-takes-all stereo result (a). We use a series of filters (see text for details) to prune
outliers. We fill the gaps that have formed by propagating the depths of the reliable pixels (e). The final envelope is obtained by applying a min-filter and
scaling the result (f).

term (Fig. 4e), and obtain the near envelope by filtering the map

and pulling it forward in depth (Fig. 4f).

Computing the anchor pixels: We start by computing a cheap

“winner-takes-all” (WTA) stereo result (Fig. 4a) by dropping the

smoothness term from Eq. 1 and independently computing the min-

imum of Edata for each pixel. This quantity can be computed very

fast, but the resulting depth maps are very noisy and contain a

mixture of reliable and outlier depths (Fig. 4a). It is critical that the

near envelope only be constructed from reliable pixels, otherwise

it might either become ineffective due to being too lenient, or it

might erroneously cut off true nearby objects, which then cannot

be recovered by the final depth computation. Therefore, we wish

to filter the outliers from the WTA depth maps. This is difficult,

however, because we are faced with two conflicting objectives: (1)

we want the filter to be conservative so it only lets through reliable

pixels, but on the other hand (2) we need the filtered depth maps

to be as complete as possible so we do not remove truly existing

content.

We resolve this problem by applying a judiciously selected com-

bination of pruning filters (Fig. 4b-4d). Each filter is focused on a

different kind of outlier, but they are all designed to preserve nearly

all reliable pixels, so that their combination achieves both objectives

stated above.

The first step is to evaluate the geometric consistency (GC) mea-

sure [Wolff et al. 2016]. This boils down to examining each 3D point

originating from a depth map against all other depth maps and

checking whether it is consistent with surfaces implied by the other

views. If the point is in conflict with the visibility in other depth

maps or not in agreement with a sufficient number of other depth

maps it is deemed inconsistent, and we remove the point (Fig. 4b,

see Wolff et al.’s paper and the supplementary document for details).

We tune the filter carefully to avoid removing too many inliers.

As a result, its output still contains some amount of outlier pixels

that fall into two categories: sparse small noise regions (almost like

salt-and-pepper noise) and larger floaters. These remaining outliers

can be pruned using a median filter: a pixel is pruned if its depth is

sufficiently different from the median filtered depth map (i.e., not

within a factor of [0.9, 1.11]).
Tuning the size of the median filter is problematic. A large filter

removes thin structures, while a small filter cannot prune large

floaters. Our solution is two split the filter into two steps. We first

use a small median (5× 5 on a 900× 1350 image) to prune the sparse

noise Fig. 4c. To remove larger outliers we use a much larger 51× 51
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Reference color images

Plane-sweep + MRF without near envelope (standard)

Plane-sweep + MRF with near envelope (our result)

Fig. 5. Comparison of plane sweep stereo without and with near envelope.
Note the erroneous near-depths (dark colors) in the middle row. The sup-
plementary material contains complete depth map result sets for all of our
scenes.
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Fig. 6. Evaluating the near envelope construction using a set of ground
truth depth maps from various scenes. Left: Completeness and precision
plot for the outlier pruning stages. Right: Tightness and Error plots for the
final near envelope. Please see the text for details.

median, but weigh it using a bilateral color term [Ma et al. 2013]

(σc = 0.033) (Fig. 4d), which prevents the removal of thin structures.

Propagating the anchor depths: We spread the sparse anchor depths

to the remaining pixels by solving a first-order Poisson system, sim-

ilar to the one used in Levin et al.’s colorization algorithm [2004],

argmin

x

∑
i
wi

(
xi − x ′i

)
2

+
∑

(i, j)∈𝒩
wi j

(
xi − x j

)
2

, (5)

where x ′i are the depths of the anchor pixels (where defined), and xi

are the densely propagated depthswe solve for.wi j = e−(ci−c j )
2

/2σ 2

env

is the color based affinity term used by Levin et al. [2004] (σenv = 0.1).
wi = 250σ 2

i is a unary term that gives more weight to pixels in tex-

tured regions where MVS is known to be more reliable [Kopf et al.

2013], which we set to the variance σ 2

i of the color in the surround-

ing 19 × 19 patch.

Computing the final near envelope: Wemake the propagated depths

more conservative by multiplying them with a constant factor of 0.9
and subsequently applying a morphological minimum filter with

diameter set to about 3% of the image diagonal.

Fig. 5 compares the results of the MVS algorithm from the previ-

ous section with and without the near envelope on a few representa-

tive images. In the supplementary material we provide the complete

set of images for all our scenes, and also a comparison to other MVS

algorithms.

Evaluation: To verify our near envelope construction algorithm,

we generated a set of six ground truth depth maps across different

scenes. We generated these by keeping only the most confident

pixels from a COLMAP 2.1 reconstruction and manually inspected

them for correctness.

For the WTA result as well as the three pruning stages (Fig-

ures Fig. 4a-d), we plot the completeness (percentage of pixels re-

tained) as well as the precision (percentage of inliers among the

retained pixels) (Fig. 6, left). The plots show that we retain a large

fraction of pixels while eliminating nearly all outliers.

For the final near envelope (Fig. 4f), we evaluate the error (per-

centage of pixels where near envelope cuts actual content) as well as

the tightness (average inverse distance between the near envelope

and actual content). The sweeps for the min-filter size and scaling

factor parameters in Fig. 6, right show that our default parameter

(black dot) strikes a good balance between error and tightness.

4.4 Parallax-tolerant Stitching and Two-layer Fusion
In this section, we merge the depth maps into a panorama. Image

alignment and stitching is a well studied problem [Szeliski 2006],

but most methods assume that there is little parallax between the

images. There are MVS algorithms that fuse depth maps (or directly

compute a fused result) [Furukawa and Hernández 2015], but their

output is not optimized for a specific viewpoint.

Our algorithm starts by warping all the depth maps into the

panoramic domain (Sec. 4.4.1), then stitches a front surface and a

back surface panorama (Sec. 4.4.2), and finally merges the two into

a single two-layered mesh (Sec. 4.4.3).

4.4.1 Front and Back Surface Warping. We warp each depth map

into a central panoramic image (using equirectangular projection)

by triangulating it into a grid mesh and rendering it with the normal

rasterization pipeline, letting the depth test select the front surface

when multiple points fall onto the same panorama pixel. One prob-

lem with this simple approach is that long stretched triangles at

depth discontinuities might obscure other good content, and we do

not want to include them in the stitch.

We resolve this problem by blending the z-values of rasterized

fragments with a stretch penalty s ∈ [0, 1] before the depth test,
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back inverted 

front modified 

front normal 

Fig. 7. We warp the depth maps into the panorama by rendering them with
a special depth test to generate front and back surfaces for stitching. (a)
highly stretched triangles at depth discontinuities can obscure other good
content. (b) We use a modified depth test (see text) to prefer non-stretched
triangles even if they are further away. (c) We obtain back surface warps by
inverting the depth test.

z′ = (z + s) /2. The division by 2 keeps the value z′ in normalized

clipping space. The stretch penalty,

s = 1 −min

( α
τstretch , 1

)
, (6)

considers the grazing angle α from the original viewpoint and pe-

nalizes small values below τstretch = 1.66◦, i.e., rays that are nearly
parallel to the triangle surface. This modification pushes highly

stretched triangles back, so potentially less stretched back surfaces

can win over instead (Fig. 7b).

Since we are not just interested in only reconstructing the first

visible surface, we generate a second back surface warp for each

image. One possible way to generate this is depth peeling [Shade

et al. 1998]; however, this method is best suited for accurate depth

maps and did not perform well on our noisy estimates. We achieved

more robust results, instead, by simply inverting the depth test,

i.e. z′′ = 1 − z′. This simple trick works well because when repro-

jecting depth maps to slightly new viewpoints, the resulting depth

complexity rarely exceeds two layers.

4.4.2 Single Front and Back Layer Stitching. We are now ready

to combine the warped color and depth maps from the previous

section into stitched front and back surface panoramas with depth.

This involves solving a discrete pixel labeling problem, where each

pixel i in the panorama chooses the label αi from one of the warped

sources. We use cαii to denote the color of i from the source image αi
and use an analogous notation for other warped value maps (depth,

stretch, etc.)

There are a number of different data and smoothness constraints

that have to be considered and are sometimes conflicting. We first

stitch the front, and subsequently the back-surface panorama by

optimizing the following objective:

argmin

{αi }

∑
i
λ1 Φgc(i) + λ2 Φstretch(i) + λ3 Φdepth(i)︸                                            ︷︷                                            ︸

Data terms

+

∑
i, j ∈𝒩

λ4 Ψcolor(i, j) + λ5 Ψdisp(i, j)︸                             ︷︷                             ︸
Smoothness terms

.
(7)

The geometric consistency term Φgc is a binary function set to

1 for pixels that fail the test [Wolff et al. 2016] (see supplementary

material), and 0 otherwise. The triangle stretch term Φstretch discour-
ages selecting pixels from long “rubber sheet” triangles (using the

stretch penalty defined in Eq. 6):

Φstretch(i) = − log sαii . (8)

When stitching front surfaces, we use the depth data terms Φdepth
to encourage depths that are consistent among many views. Similar

to the GC filter, we project the 3D point for each pixel into all other

depth maps and check whether the projected point’s depth and the

depth map value are similar. We count the number ni of other depth
maps that are consistent in this manner, and set the depth data term:

Φdepth(i) = 1 −min

( ni
τoverlap , 1

)
. (9)

τoverlap = 5 specifies how many depth maps need to agree before

we consider a pixel to be reliable.

When stitching back surfaces, we use a different depth term that

discourages selecting pixels that are closer than the front stitch:

Φdepth(i) =

{
10 if d

αi
i < 0.95d

front
i

0 otherwise.

(10)

The color smoothness term Ψcolor is a truncated version of the

seam-hiding pairwise cost from the GraphCut Textures paper [Kwa-

tra et al. 2003]:

Ψcolor(i, j) = min

(cαii − c
α j
i

2
2
,τc

)
+min

(cαij − c
α j
j

2
2
,τc

)
, (11)

and the depth smoothness term Ψdisp is a similar truncated term

(working with disparities):

Ψdisp(i, j) = min

(����� 1

d
αi
i

−
1

d
α j
i

����� ,τd
)
+min

©«
������ 1

d
αi
j

−
1

d
α j
j

������ ,τdª®¬. (12)

The depth d is normalized to metric units, and we use the truncation

thresholds τc = 0.05, τd = 0.05m−1
.

We set the following balancing coefficients,

λ1 = 200, λ2 = 1000, λ3 = 100, λ4 = 200, λ5 = 100, (13)

and solve the labeling problems at a reduced 512 × 256 resolution

(to achieve a reasonable performance) using the alpha expansion

algorithm [Kolmogorov and Zabih 2004]. We then upsample the

resulting label map to full resolution (8192×4096 pixels) using a

simple PatchMatch-based upsampling algorithm [Besse et al. 2014].

4.4.3 Two-layer Merging. Now that we have obtained a front

and back stitch, our next goal is to fuse them into the final two-layer

representation, to produce a light-weight mesh representation of the

scene that is easy to render on awide variety of devices. Compared to

rendering both layers separately, the two-layer fused mesh provides

several benefits by (1) resolving which pixels should be connected

as part of the same surfaces and where there should be gaps (2)

removing color fringes and allows for seamless texture filtering

across layers, (3) identifying and discarding redundant parts of the

background layer, (4) hallucinating unseen geometry by extending

the background layer.

We represent the two-layer panorama as a graph. Each pixel i in
the panorama has up to two nodes that represent the foreground and

background layers; if they exist, we denote these nodes as fi and bi .
Each node n has a depth value d(n) and a foreground / background

label l(n) ∈ {F ,B}.
We start by generating for both front and back stitches, fully 4-

connected but disjoint grid-graphs (Fig. 9, top). Each node is assigned

a depth and label according to the stitch it is drawn from.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 234. Publication date: November 2017.



Casual 3D Photography • 234:9

(a) Front color-and-depth panorama (b) Front detail (c) Back detail

Fig. 8. Our algorithm first stitches a color-and-depth panorama for the front-surfaces (a). Its depth is used as constraint, when subsequently stitching the
back-surface panorama (c, only detail shown). Note the eroded foreground objects when comparing the back and front details (b-c).

Input: color

Input: initial fully connected f and b graphs

Step 1: remove redundant b nodes

Step 2: recompute connectivity

Step 3: expand b, hallucinate depth and color

Step 4: propagate B label onto f nodes to remove color fringes

Fig. 9. Fusing the front and back stitches into a single two-layer graph
representation. The diagrams show the front and back nodes for the high-
lighted scanline. Nodes with F and B labels are drawn in yellow and purple,
respectively. Nodes with hallucinated depth and color are outlined.

Note that these graphs contain redundant coverage of some scene

objects, e.g., the inner core of the rocks in Fig. 9. This is fully inten-

tional and we take advantage of it to remove color fringes around

Initial graph Before expansion After expansion

Before color fringe removal Final result

Fig. 10. Steps of the two-layer fusion algorithm. Compare with the diagrams
in Fig. 9.

depth continuities further below. However, for now, we remove

the redundancies by removing all the bi nodes that are too similar

to their fi counterparts, i.e., d(fi )/d(bi ) < τdratio = 0.75 (step 1 in

Fig. 9).

The graphs are not redundant anymore, but now the b graph

contains many isolated components, and the f graph contains long

connections across discontinuities. We recompute the connectivity

(step 2 in Fig. 9) as follows. For each pair of horizontally or vertically

neighboring pixels we consider all combinations of f and b nodes

and sort them by their depth ratio, most similar first. Then we

connect the most similar pair if the depth ratio is above τdratio. If
there is another pair that can be connected without intersecting

with the previous one, we connect that as well. Now we have a

well-connected two-layer graph.

For small viewpoint changes, the back layer provides some extra

content to fill gaps, but large translations can still reveal holes. To

improve this, we expand the back layer by hallucinating depth and

color (step 3 in Fig. 9) in an iterative fashion, one pixel ring at a time.

At each iteration, we identify b and f nodes that are not connected

in one direction. We tentatively create a new candidate neighbor

node for these pixels and set their depths and colors to the average

of the nodes that spawned them. We keep candidate nodes only

if they are not colliding with already existing nodes (using τdratio),
and if they become connected to the nodes that spawned them.
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(a) Unlit rendering (b) Lit with

forward-diff normals

(c) Lit with

our normals

(d) Forward-diff

normals

(e) Smoothed

base

(f) Image-based

details

(g) Final

normals

Fig. 11. Normal maps computed directly from the estimated geometry (d)
are not sufficient for convincing lighting effects (b). We improve the normal
map by combining a smoothed version (e) with surface details extracted
from the color image alone (f). The combined normal map (g) is fake but
plausible, and enables interesting artistic lighting effects (c).

5 LIGHTING
The final step of our reconstruction pipeline is to compute a normal

map to enable simple artist-driven lighting effects (Fig. 11). Note

that we are merely interested in normals that look plausible and
are good enough for simple lighting effects; full-blown relighting is

beyond the scope of this paper.

Adding lights to a synthetic scene requires estimating the normal

vector at every scene point. Our depth looks convincing when ren-

dered with diffuse texture. However, it contains too many artifacts

when used for relighting (Fig. 11b). We resolve this by synthesizing

a normal map that is a combination of a smooth base map with the

right slopes and a detail map that is hallucinated from the color

image data (Fig. 11e-g).

The base normal map should be piece-wise smooth but discon-

tinuous at depth edges and contain the correct surface slopes. We

compute this map by filtering normals obtained by taking forward

differences with a linear system similar to Eq. 5, except the data

constraints x ′i are defined everywhere and the smoothness weights

wi j are binary weights, set to zero at the discontinuities identified

in the post-processing in Sec. 4.4.2, and set to one everywhere else.

We hallucinate the details map from the luminance image using

the method of Khan et al. [2006]. Their method estimates a normal

map by hallucinating a depth map from just the image data, assum-

ing surface depth is inversely related to image intensity. While the

depth generated in this manner is highly approximate, it is con-

sistent with the image data and provides a surprisingly effective

means for recovering geometric detail variations.

We combine these two cues as follows. For a given pixel with

azimuthal and polar angles (θ ,ϕ), let nf be the normal obtained

Table 1. Approximate timings for the 3D photo reconstruction algorithm
stages for a whole scene in h:mm.

Stage Timing
Sparse reconstruction (Sec. 4.2) 0:40

Dense reconstruction (Sec. 4.3) 3:00

Front and Back Warping (Sec. 4.4.1) 0:15

Front and Back Stitching (Sec. 4.4.2) 0:30

Two-layer Fusion (Sec. 4.4.3) 0:30

Normal Map Estimation (Sec. 5) 0:20

Total 5:15

by applying the guided filter to the depth normals, and ni be the
normal obtained from the image-based estimation method. Let Rs
be a local coordinate frame for the image-based normal. We obtain

it by setting the first row to a vector pointing radially outward,

Rs,0 =
(
sinθ cosϕ, cosθ , sinθ sinϕ

)
(14)

and the other rows through cross products with the world up vector

wup,

Rs,1 =
Rs,0 ×wupRs,0 ×wup

 , Rs,2 = Rs,0 × Rs,1. (15)

We define a similar coordinate frameRf for the filtered depth normal,

setting Rf ,0 = −nf and the other rows analogously to Eq. 15.

We can now transfer the details as follows:

nc = R−1f Rsni . (16)

Since often sky pixels are reconstructed at an arbitrary depth,

we use a sky detector [Schmitt and Priese 2009] on the stitched

panorama to selectively disable lighting in the sky (by setting the

normals to zero).

6 RESULTS AND EVALUATION
We have captured and reconstructed a number of 3D photos that can

be seen in Fig. 12, as well as the accompanying video and supplemen-

tary material. 14 of these scenes were captured with a DSLR camera

and 5 with cell phone cameras, as described in Sec. 4.1. The scenes

span man-made and natural environments, indoors and outdoors,

as well as full 360
◦×180◦ and partial coverage. They contain many

elements that are difficult to reconstruct, such as water surfaces,

swaying trees, and moving cars and people.

Like other end-to-end reconstruction systems, our system de-

pends on many parameters. We tuned each component individually,

following the data flow. For each component, we identified opposing

artifacts in a subset of the scenes (e.g., thin objects vs. textureless

areas), and performed a parameter sweep to find values that balance

both kinds of artifacts. All results provided in this paper and supple-

mentary material and video were created using the same parameter

settings, except lens calibration.

We have experimented with a variety of geometry-aware and

lighting effects, including flooding a scene with virtual water, adding

a moving fairy light, and a midnight light show. Figs. 1 and 11 show

some examples; more can be seen in the accompanying materials.
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Forest Rock Creepy Attic Gymnasium Gas Works Park

Boat Shed Church Jakobstad Museum Water Tower

Library Pike Place Gum Wall British Museum

360
◦ × 180

◦
scenes captured with DSLR cameras

Sofa Cafe

Partial scenes captured with DSLR cameras

Troll Gravity Kitchen Clowns Kerry Park

Partial scenes captured with cell phone cameras

Fig. 12. Some 3D photos we have captured with DSLR and phone cameras.

6.1 Performance
All of the 3D photos were reconstructed on a single 6-Core Intel

Xeon PC with an NVIDIA Titan X GPU and 256 GB of memory.

Table 1 lists timings for a representative DSLR capture.

While our current implementation is slow, we note that there

is significant room for improvement. The two bottlenecks are the

sparse and the dense scene reconstruction steps, and each can be

sped up significantly. A SLAM algorithm would provide a much

faster alternative to the slow structure from motion (SfM) algorithm,

and it could even improve the results since SLAM is optimized for

sequentially captured images while SfM is designed for unstructured

wide-baseline input. The MVS reconstruction is by far the slowest

step in our pipeline, but it could be trivially parallelized, since each

image is reconstructed independently from the others.

6.2 Comparative Evaluation
We have made extensive quantitative and qualitative experiments

comparing our system with the following academic and commercial

end-to-end reconstruction systems:

PMVS:We reconstruct a semi-dense point cloud with PMVS [Fu-

rukawa and Ponce 2010] and then use Screened Poisson Sur-

face Reconstruction [Kazhdan and Hoppe 2013] to create a

watertight surface.

MVE:We use the Multi-View Environment [Fuhrmann et al. 2014]

implementations of Goesele et al.’s [2007] semi-dense recon-

struction and Floating Scale Surface Reconstruction for tex-

turing [Fuhrmann and Goesele 2014].

GDMR:TheGlobal, DenseMultiscale Reconstructionmethod [Um-

menhofer and Brox 2015] starts from the same semi-dense

reconstruction as MVE, but provides an alternative surface

reconstruction and texturing method.

COLMAP: COLMAP 2.1 [Schönberger et al. 2016] provides an

end-to-end pipeline for sparse reconstruction, depth map

computation, and fusion.

PhotoScan: Agisoft PhotoScan3 is a commercial end-to-end re-

construction pipeline.

Capturing Reality: This4 is another state-of-the-art end-to-end
reconstruction pipeline.

We use the publicly available implementations for each system.

All systems have in common that they initially perform or require as

input a sparse reconstruction, which is subsequently densified. To

provide a fair comparison, we used the same sparse reconstruction
(computed with COLMAP) for all systems, including ours.

Some of the methods produce impressive geometric reconstruc-

tions but only relatively coarse textures. For this reason we ex-

perimented with the following alternative texturing methods, in

addition to whatever native textures each system produces:

3
http://www.agisoft.com/

4
https://www.capturingreality.com/
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Fig. 13. Plotting the average virtual rephotography error against completeness for different reconstruction and texturing methods. The dotted red line
represents our full system with native textures, i.e., is identical to the solid line in the left plot.

TexRecon [Waechter et al. 2014]: This method produces a high-

quality texture atlas for a given 3D model and images that

are registered against this model.

Unstructured Lumigraph Rendering [Buehler et al. 2001]: This
method uses the 3D model as a geometric proxy for Image-

Based Rendering. For each pixel we blend the two top-scoring

images to avoid ghosting.

6.3 Quantitative Evaluation
We use Virtual Rephotography [Waechter et al. 2017] to provide a

quantitative comparison against the systems mentioned before. This

is a unified evaluation method for end-to-end reconstruction-and-

rendering methods. Its idea is to render the reconstruction from the

exact same viewpoint as each input image (“virtual rephotos”), and

compare the results against the ground truth images with respect

to completeness and visual error.

Since the texture resolution of the methods differ, we render

results at about 20% of the input image resolution (900 pixels width).

For each pixel, we evaluate the minimum sum of absolute differences

(SAD) error within a shiftable window of ±2 pixels.

Fig. 13 provides error and completeness scores aggregated over

all 15 scenes for each reconstruction and the three alternative ways

of texturing them, and Fig. 14 provides a visual result for an ex-

ample image. In the supplementary material, we provide a more

fine-grained break-down of these results.

6.4 Qualitative Evaluation
To help the reader evaluate the visual quality of the results, we

provide a full set of videos with scripted camera paths for all scenes

and all methods in the supplementary material, and a web page for

convenient side-by-side visual inspection.

A major limitation of most systems we compared against is that

they do not produce complete results. Most methods do not recon-

struct far regions, due to reliability thresholds in the depth estima-

tion. Another source of missing regions are texture-less areas, where

matching is ambiguous. Our technique produces far more complete

results and relies on MRF-based smoothing to fill in unreliably or

ambiguous regions.

MRF smoothing also helps in regions with highly complex geom-

etry, where systems without smoothing (e.g., COLMAP 2.1) produce

noisy results.

Some of the systems produce only relatively coarse vertex color

textures. TexRecon [Waechter et al. 2014] does a good job in im-

proving the texturing, at the expense of making the results a bit less

complete, since it removes uncertain triangles. Another alternative

is image-based rendering [Buehler et al. 2001]. While IBR is very

good at optimizing the reprojection error, it has several downsides:

the display is less stable as texturing is view-dependent, leading to

visibly moving texture seams when moving the camera. Another

disadvantage of IBR is that it is far more expensive than native tex-

turing in terms of data size (all source images need to be retrieved

and retained in memory) as well as performance (shading).

6.5 Stitching Evaluation
In Fig. 15, we show the effect of running our system without the

near envelope and without the GC filter (see the supplementary

material for more results). The near envelope provides a substan-

tial improvement in many scenes. Without it, we often see many

floaters (dark spots in Fig. 15a) that lead to visual artifacts (Fig. 15b).

Disabling the GC filter yields more edge fattening in many scenes,

though its impact is less dramatic than the near envelope.

6.6 Limitations
Our system has some important limitations, which are inherited

from the underlying sparse and dense reconstruction algorithms.

The stereo algorithm may fail to reconstruct shiny and reflective

surfaces (e.g., British Museum), as well as dynamically moving

objects such as people (e.g., Pike Place, Gum Wall). This might

might lead to erroneously estimated depth. Often, our subsequent

processing stages can fix these problems, e.g., the stitching step deals

well with geometric outliers in single depth maps. But in some of our

results, small artifacts can still be found under close inspection (see

supplemental videos). In partially captured scenes some artifacts

may appear near boundaries where fewer input images observed

the scene.

Another minor limitation is that our current implementation does

not perform any blending, which sometimes leads to visible color

discontinuities (e.g., Library, Kitchen). It would be relatively

straight-forward to add color blending and even depth-blending

[Luo et al. 2012] to our system.

A limitation shared with most modern 3D reconstruction systems

is the dependency on many parameters. We found, however, that

besides lens calibration parameters, all other parameter settings

generalize well. In fact, we used the same settings for all scenes

shown throughout the submission, even though they are produced

with very different types of cameras.

Another important limitation is that our approach cannot produce

3D videos, because the casual capture process requires moving a
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(a) Reference (b) Our result (c) Capturing

reality

(d) GDMR &

TexRecon

(e) COLMAP 2.1 &

TexRecon

(f) Photoscan (g) PMVS &

TexRecon

(h) MVE &

TexRecon

Fig. 14. Rendered results and corresponding rephotography errors in the Church scene. Dark regions have lower error.

(a) Depth without near-envelope (b) Render without near envelope

(c) Depth with near-envelope (d) Render with near envelope

(e) Stitched without GC

cost

(f) Stitched colors (g) Stitched with GC

cost

Fig. 15. Showing the effect of running our system without the near envelope
prior (a-d), as well as without GC cost in the stitcher (e-g). Running without
near envelope yields many floaters that result in visual artifacts. The effect
of disabling the GC cost is more subtle, it results in more edge fattening.

single camera in space. It would be possible, however, to apply our

algorithm to structured input captured by a multi-camera rig. This

is an interesting avenue for future work.

7 CONCLUSIONS
In this paper, we have developed a novel system to construct seam-

less two-layer 3D photographs from sequences of casually acquired

photographs. Our work builds on a strong foundation in sparse

and dense MVS algorithms, with enhanced results due to our novel

near envelope cost volume prior. Our parallax-tolerant stitching

algorithm further removes many outlier depth artifacts. It produces

front and back surface panoramas with well-reconstructed depth

edges, because it starts from depth maps whose edges are aligned

to the reference image color edges. Our fusion algorithm fuses the

front and back panoramas into a single two-layer 3D photo.

The consequence of all these technical innovations is that we

can apply our algorithm to casually captured input images that

violate many common assumptions of MVS algorithms. Most of our

scenes contain a variety of difficult to reconstruct elements, such

as dynamic objects (people, swaying trees), shiny materials (lake

surface, windows), and textureless surfaces (sky, walls). The fact that

we nevertheless succeed in reconstructing relatively artifact-free

scenes speaks for the robustness of our approach.

ACKNOWLEDGEMENTS
The authors would like to thank Scott Wehrwein, Tianfan Xue,

Jan-Michael Frahm and Kevin Matzen for helpful comments and

discussion.

REFERENCES
Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,

Carlos Hernandez Esteban, Sameer Agarwal, and Steven M. Seitz. 2016. Jump:

Virtual Reality Video. ACM Transactions on Graphics 35, 6 (2016).
Jonathan T. Barron and Jitendra Malik. 2015. Shape, Illumination, and Reflectance from

Shading. IEEE Trans. Pattern Anal. Mach. Intell. 37, 8 (2015), 1670–1687.
Frederic Besse, Carsten Rother, Andrew Fitzgibbon, and Jan Kautz. 2014. PMBP: Patch-

Match Belief Propagation for Correspondence Field Estimation. Int. J. Comput.
Vision 110, 1 (2014), 2–13.

Aaron F. Bobick and Stephen S. Intille. 1999. Large Occlusion Stereo. International
Journal of Computer Vision 33, 3 (1999), 181–200.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.

2001. Unstructured Lumigraph Rendering. (2001), 425–432.

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.

2013. Depth Synthesis and Local Warps for Plausible Image-based Navigation. ACM
Trans. Graph. 32, 3 (2013), 30:1–30:12.

Robert T. Collins. 1996. A space-sweep approach to true multi-image matching. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 1996). 358–363.

Paul Debevec, Chris Tchou, Andrew Gardner, Tim Hawkins, Charis Poullis, Jessi

Stumpfel, Andrew Jones, Nathaniel Yun, Per Einarsson, Therese Lundgren, Marcos

Fajardo, and Philippe Martinez. 2004. Estimating Surface Reflectance Properties of

a Complex Scene under Captured Natural Illumination. ICT Technical Report ICT
TR 06 2004 (2004).

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering

Architecture from Photographs: A Hybrid Geometry- and Image-based Approach.

In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’96). ACM, New York, NY, USA, 11–20. https://doi.org/10.

1145/237170.237191

Sylvain Duchêne, Clement Riant, Gaurav Chaurasia, Jorge Lopez-Moreno, Pierre-Yves

Laffont, Stefan Popov, Adrien Bousseau, and George Drettakis. 2015. Multi-View

Intrinsic Images of Outdoors Scenes with an Application to Relighting. ACM
Transactions on Graphics (2015).

David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth Map Prediction from a

Single Image Using a Multi-scale Deep Network. Proceedings of the 27th International
Conference on Neural Information Processing Systems (NIPS) (2014), 2366–2374.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 234. Publication date: November 2017.

https://doi.org/10.1145/237170.237191
https://doi.org/10.1145/237170.237191


234:14 • Hedman et. al.

Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2016. Direct Sparse Odometry.

arXiv:1607.02565 (2016).
Facebook. 2016. Facebook Surround 360. https://facebook360.fb.com/

facebook-surround-360/. (2016). Accessed: 2016-12-26.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. DeepStereo:

Learning to Predict New Views From the World’s Imagery. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

Simon Fuhrmann and Michael Goesele. 2014. Floating Scale Surface Reconstruction.

ACM Trans. Graph. 33, 4 (2014), article no. 46.
Simon Fuhrmann, Fabian Langguth, and Michael Goesele. 2014. MVE: A Multi-view

Reconstruction Environment. Proceedings of the Eurographics Workshop on Graphics
and Cultural Heritage (GCH ’14) (2014), 11–18.

Yasutaka Furukawa and Carlos Hernández. 2015. Multi-View Stereo: A Tutorial. Foun-
dations and Trends. in Computer Graphics and Vision 9, 1-2 (2015), 1–148.

Yasutaka Furukawa and Jean Ponce. 2010. Accurate, Dense, and Robust Multiview

Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 8 (2010), 1362–1376.
Silvano Galliani, Katrin Lasinger, and Konrad Schindler. 2015. Massively Parallel

Multiview Stereopsis by Surface Normal Diffusion. The IEEE International Conference
on Computer Vision (ICCV) (2015).

Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. 2017. Unsupervised Monoc-

ular Depth Estimation with Left-Right Consistency. CVPR (2017).

M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S.M. Seitz. 2007. Multi-View Stereo

for Community Photo Collections. (2007), 1–8.

Google. 2015. Carboard Camera. https://googleblog.blogspot.com/2015/12/

step-inside-your-photos-with-cardboard.html/. (2015). Accessed: 2016-12-26.

Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable

Inside-out Image-based Rendering. ACM Trans. Graph. 35, 6 (2016), 231:1–231:11.
Sunghoon Im, Hyowon Ha, François Rameau, Hae-Gon Jeon, Gyeongmin Choe, and

In So Kweon. 2016. All-Around Depth from Small Motion with a Spherical Panoramic

Camera. European Conference on Computer Vision (ECCV ’16) (2016), 156–172.
Hiroshi Ishiguro, Masashi Yamamoto, and Saburo Tsuji. 1990. Omni-directional stereo

for making global map. In Third International Conference on Computer Vision. IEEE,
540–547.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,

Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

and Andrew Fitzgibbon. 2011. KinectFusion: Real-time 3D Reconstruction and

Interaction Using a Moving Depth Camera. Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (2011), 559–568.

Michal Jancosek and Tomas Pajdla. 2011. Multi-view Reconstruction PreservingWeakly-

supported Surfaces. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2011) (2011), 3121–3128.

Kevin Karsch, Varsha Hedau, David Forsyth, and Derek Hoiem. 2011. Rendering

Synthetic Objects into Legacy Photographs. ACM Trans. Graph. 30, 6 (2011), 157:1–
157:12.

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.

ACM Trans. Graph. 32, 3 (2013), article no. 29.
Erum Arif Khan, Erik Reinhard, Roland W. Fleming, and Heinrich H. Bülthoff. 2006.

Image-based Material Editing. ACM Transactions on Graphics (Proc. SIGGRAPH 2006)
25, 3 (2006), 654–663.

Vladimir Kolmogorov and Ramin Zabih. 2004. What energy functions can be minimized

via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2
(2004), 65–81.

Nikos Komodakis and Georgios Tziritas. 2007. Approximate Labeling via Graph Cuts

Based on Linear Programming. IEEE Transactions on Pattern Analysis and Machine
Intelligence 29, 8 (2007), 1436–1453.

Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele. 2007. Joint

Bilateral Upsampling. ACM Trans. Graph. 26, 3 (2007).
Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael

Goesele. 2013. Image-based Rendering in the Gradient Domain. ACM Trans. Graph.
32, 6 (2013), 199:1–199:9.

Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003. Graphcut

Textures: Image and Video Synthesis Using Graph Cuts. ACM Trans. Graph. 22, 3
(2003), 277–286.

Fabian Langguth, Kalyan Sunkavalli, Sunil Hadap, and Michael Goesele. 2016. Shading-

aware Multi-view Stereo. Proceedings of the European Conference on Computer Vision
(ECCV) (2016).

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization Using Optimization.

ACM Trans. Graph. 23, 3 (2004), 689–694.
Kaimo Lin, Nianjuan Jiang, Loong-Fah Cheong, Minh N. Do, and Jiangbo Lu. 2016.

SEAGULL: Seam-Guided Local Alignment for Parallax-Tolerant Image Stitching.

14th European Conference on Computer Vision (ECCV) (2016), 370–385.
Sheng-Jie Luo, I-Chao Shen, Bing-Yu Chen, Wen-Huang Cheng, and Yung-Yu Chuang.

2012. Perspective-aware Warping for Seamless Stereoscopic Image Cloning. ACM
Trans. Graph. 31, 6 (2012), article no. 182.

Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. 2013. Constant Time

Weighted Median Filtering for Stereo Matching and Beyond. In IEEE International
Conference on Computer Vision (ICCV 2013). 49–56.

Raúl Mur-Artal and Juan D. Tardós. 2016. ORB-SLAM2: an Open-Source SLAM System

for Monocular, Stereo and RGB-D Cameras. arXiv preprint arXiv:1610.06475 (2016).

OpenMVS. 2016. OpenMVS: open Multi-View Stereo reconstruction library. https:

//github.com/cdcseacave/openMVS. (2016). Accessed: 2016-12-26.

Shmuel Peleg and Moshe Ben-Ezra. 1999. Stereo panorama with a single camera. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 1999) (1999), 395–401.

Shmuel Peleg, Moshe Ben-Ezra, and Yael Pritch. 2001. Omnistereo: panoramic stereo

imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001),
279–290.

Realities. 2017. realities.io | Go Places. http://realities.io/. (2017). Accessed: 2017-1-12.

Christoph Rhemann, Asmaa Hosni, Michael Bleyer, Carsten Rother, and Margit Gelautz.

2011. Fast cost-volume filtering for visual correspondence and beyond. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2011). 3017–3024.

Christian Richardt, Yael Pritch, Henning Zimmer, and Alexander Sorkine-Hornung.

2013. Megastereo: Constructing High-Resolution Stereo Panoramas. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2013) (2013), 1256–1263.

Daniel Scharstein and Richard Szeliski. 2002. A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms. International Journal of Computer
Vision 47, 1-3 (2002), 7–42.

Frank Schmitt and Lutz Priese. 2009. Sky detection in CSC-segmented color images.

International Conference on Computer Vision Theory and Applications (VISAPP 2009)
(2009), 101–106.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.

2016. Pixelwise View Selection for Unstructured Multi-View Stereo. European
Conference on Computer Vision (ECCV) (2016).

Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski.

2006. A comparison and evaluation of multi-view stereo reconstruction algorithms.

In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), Vol. 1. IEEE, 519–528.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered Depth

Images. Proceedings of SIGGRAPH ’98 (1998), 231–242.
Harry Shum and Rick Szeliski. 1998. Construction and refinement of panoramic mosaics

with global and local alignment. Sixth International Conference on Computer Vision
(ICCV’98) (1998), 953–958.

Richard Szeliski. 2006. Image Alignment and Stitching: A Tutorial. Found. Trends.
Comput. Graph. Vis. 2, 1 (2006), 1–104.

Jayant Thatte, Jean-Baptiste Boin, Haricharan Lakshman, and Bernd Girod. 2016. Depth

augmented stereo panorama for cinematic virtual reality with head-motion parallax.

2016 IEEE International Conference on Multimedia and Expo (ICME) (2016).
Benjamin Ummenhofer and Thomas Brox. 2015. Global, Dense Multiscale Reconstruc-

tion for a Billion Points. IEEE International Conference on Computer Vision (ICCV)
(2015).

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey

Dosovitskiy, and Thomas Brox. 2017. DeMoN: Depth and Motion Network for Learn-

ing Monocular Stereo. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017).

Valve. 2016. Valve Developer Community: Advanced Outdoors Photogramme-

try. https://developer.valvesoftware.com/wiki/Destinations/Advanced_Outdoors_

Photogrammetry. (2016). Accessed: 2016-11-3.

George Vogiatzis, Carlos Hernández Esteban, Philip H. S. Torr, and Roberto Cipolla.

2007. Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-

Consistency. IEEE Trans. Pattern Anal. Mach. Intell. 29, 12 (2007), 2241–2246.
Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes Kopf, and

Michael Goesele. 2017. Virtual Rephotography: Novel View Prediction Error for 3D

Reconstruction. ACM Trans. Graph. 36, 1 (2017), article no. 8.
Michael Waechter, Nils Moehrle, and Michael Goesele. 2014. Let There Be Color!

Large-Scale Texturing of 3D Reconstructions. ECCV 2014 8693 (2014), 836–850.
Katja Wolff, Changil Kim, Henning Zimmer, Christopher Schroers, Mario Botsch, Olga

Sorkine-Hornung, and Alexander Sorkine-Hornung. 2016. Point Cloud Noise and

Outlier Removal for Image-Based 3D Reconstruction. In International Conference on
3D Vision (3DV 2016). 118–127.

Chenglei Wu, Bennet Wilburn, Yasuyuki Matsushita, and Christian Theobalt. 2011.

High-quality Shape fromMulti-view Stereo and Shading Under General Illumination.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’11) (2011), 969–
976.

Kuk-Jin Yoon and In-So Kweon. 2005. Locally adaptive support-weight approach for

visual correspondence search. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2005), Vol. 2. 924–931.

Julio Zaragoza, Tat-Jun Chin, Michael S. Brown, andDavid Suter. 2013. As-Projective-As-

Possible Image Stitching with Moving DLT. Proceedings of the 2013 IEEE Conference
on Computer Vision and Pattern Recognition (2013), 2339–2346.

Fan Zhang and Feng Liu. 2014. Parallax-Tolerant Image Stitching. Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition (2014), 3262–3269.

Fan Zhang and Feng Liu. 2015. Casual Stereoscopic Panorama Stitching. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR ’15) (2015), 2002–2010.

Ke Colin Zheng, Sing Bing Kang, Michael F. Cohen, and Richard Szeliski. 2007. Layered

Depth Panoramas. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2007) (2007), 1–8.

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard

Szeliski. 2004. High-quality Video View Interpolation Using a Layered Representa-

tion. ACM Trans. Graph. (Proc. SIGGRAPH 2004) 23, 3 (2004), 600–608.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 234. Publication date: November 2017.

https://facebook360.fb.com/facebook-surround-360/
https://facebook360.fb.com/facebook-surround-360/
https://googleblog.blogspot.com/2015/12/step-inside-your-photos-with-cardboard.html/
https://googleblog.blogspot.com/2015/12/step-inside-your-photos-with-cardboard.html/
https://github.com/cdcseacave/openMVS
https://github.com/cdcseacave/openMVS
http://realities.io/
https://developer.valvesoftware.com/wiki/Destinations/Advanced_Outdoors_Photogrammetry
https://developer.valvesoftware.com/wiki/Destinations/Advanced_Outdoors_Photogrammetry


Casual 3D Photography • 234:15

A PLANE-SWEEP MVS IMPLEMENTATION
Depth Hypotheses: We distribute N = 220 depth hypotheses be-

tween dmin = 0.5 m and dmax = 1500 m according to the square

root of their disparities (∝
√
d−1), striking a balance between uni-

form depth intervals (∝ d) which undersamples foreground depths

and uniform disparity intervals (∝ d−1) which in turn oversamples

nearby regions with sub-centimeter accuracy.

Smoothness Term Esmooth(i, j): Our smoothness energy

Esmooth(i, j) = wcolor
(
ci , c j

)
wdepth

(
di ,dj

)
(17)

encourages the resulting depth map to be smooth wherever the

image lacks texture. It is a weighted sum over all neighboring pixels

(i, j), where

wcolor
(
ci , c j

)
= αc + (1 − αc)e

−|ci −cj |
2

2σ 2

c (18)

down-weighs the smoothness at strong image gradients, and

wdepth =

��di − dj
�� + αdmin

(��di − dj
�� , τd)

Z
(19)

is a piece-wise linear smoothness energy on depth labels, which

grows faster near zero. In all experiments, we set αc = 0.05, σc =
0.033, τd = 16 and αc = 31. We normalize wdepth to be between 0

and 1 using Z = N (αdτd + 1) = 715.

Photo-consistency Term Ephoto(i): To evaluate photoconsistency,

we project a pixel i into 16 neighboring images, where we compare

both colors and image gradients using sum-of-absolute-differences

(SAD). We use the transformation f (x) = 1 − exp(−x/σphoto )
to truncate both SAD costs and measure the photoconsistency

against one of the neighbor images n as the weighted average

α∇ f (SAD
n
∇
) + (1 − α∇)f (SAD

n
c ). We then compute the overall pho-

toconsistency of the depth assignment d(i) by averaging the 50%

lowest photoconsistency energies from all neighbor images. In all

experiments, we set α∇ = 0.9 and σphoto = 0.033.
Finally, we filter each slice of the resulting cost volume using

(1) A 5 × 5 Shiftable matching window [Bobick and Intille 1999],

and

(2) Cost volume filtering [Rhemann et al. 2011; Yoon and Kweon

2005] with a 10px standard deviation and σc = 0.033.

In general, cost-volume filtering enables us to smooth the cost

while preserving important objects edges. However, in our experi-

ments we found that this filter is sensitive to large color variations

and can make the filter footprint very small for small patches of

unusual color. This is why we apply shiftable-matching windows,

essentially prefiltering the cost volume across such small patches.

Photo-consistency Confidencewphoto(i): Photo-consistency mea-

sures are less reliable when a pixel is visible in a small number

of views: With more views, repeating patterns are no longer am-

biguous. Textureless surfaces also become less ambiguous, as the

textured parts in each view rule out locations where such surfaces

cannot be.

To avoid mistakes for pixels visible in few views, we limit the

influence of the photo-consistency term for such pixels, and rely

more on the smoothness term to resolve their depths. Concretely,

for each pixel i , we try all N depth hypotheses, and recordMi , the

maximum number of views that could see it. We then compute the

confidence

wphoto(i) = wmin + (1 −wmin) clamp[0,1]

(
Mi −Mmin

Mmax −Mmin

)
, (20)

a linear ramp between 1 for reliable pixels seen in Mmax = 8 or

more images, to a minimum confidencewmin = 0.1 for pixels seen
inMmin = 4 images or fewer.

Geometric Consistency Filter: We use geometric consistency (GC)

filters [Wolff et al. 2016] for two components of our algorithm:

identifying reliable anchor pixels when computing the near envelope

(Section 4.3.2) and down-weighting unreliable labels during front

and back layer stitching (Section 4.4.2).

The general idea behind GC filters is to discard pixels whose

depths do not agree between different depth maps. In our implemen-

tation, we project each pixel into 16 neighboring depth maps and

check whether it incorrectly occludes another view. We determine

whether a pixel i agrees with another depth map d ′ with the ratio

r =
d ′(p(i))

p(i).z
(21)

between the depth d ′(p(i)) stored in the depth map and depth of i
as seen in d ′. If r > 0.75, we assume i to be in front of the surfaces

in d ′, Similarly, if r < 0.75−1, then i is behind.
Based on this, we label pixels as invalid using simple thresholds:

• If it lands between neighboring camera and estimated surface

in at least GCconflicts images, mark the pixel as invalid.

• If it does not land close (i.e. neither behind or in front) to the

surface in at least GCaдr ees of the neighboring depth maps,

mark it as invalid. The intuition is that stereo matching can

only succeed if at least two cameras agree on the depth.

As a final clean-up step, we filter the result to smooth out salt-and

pepper noise. For this, we use a weighted median filter [Ma et al.

2013], guided by the depth labels (σl = 10).

During stitching, we use the thresholds

GCconflicts = 3 and GCagrees = 1.

For the near envelope, we use more aggressive thresholds

GCconflicts = 1 and GCagrees = 2,

when computing reliable anchor points.
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