Segmenting Video Into Classes of Algorithm-Suitability

Oisin Mac Aodha (UCL) Gabriel Brostow (UCL) Marc Pollefeys (ETH)

Which algorithm should I (use / download / implement) to track things in this video?

The Optical Flow Problem

#2 all-time Computer Vision problem (disputable)

"Where did each pixel go?"

Optical Flow Solutions

Compared against each other on the "blind" Middlebury test set

otical flow evaluation results				; Stat Erro	Statistics: Average <u>SD R0.5 R1.0 R2.0 A50 A75 A95</u> Error type: angle end-point interpolation normalized interpolation													
Average end-point error	Average A end-point (Hidd error avg GT		Army en texture im0_im1	e) (Hidd GT	Mequon (Hidden texture) GT im0 im1		Schefflera (Hidden texture) GT_imD_im1		Wooden (Hidden texture) GT im0 im1		Grove (Synthetic) GT im0 im1		Urban (Synthetic) GT imD im1		Yosemite (Synthetic) GT im0 im1		Teddy (Stereo) GT im0 im1	
	rank	<u>all</u>	disc unt	text all	disc unte	<u>xt all d</u>	isc <u>untext</u>	<u>all dis</u>	<u>c untext</u>	<u>all di</u>	<u>sc untext</u>	all	disc unte	<u>xt all</u>	disc unt	ext all	disc unt	
Adaptive [23]	5.2	<u>0.09</u> 1	0.26 1 0.0	06 1 <u>0.23</u> 7	0.786 0.18	36 <u>0.54</u> 111.1	19 13 0.21 5	0.18 1 0.9 ⁻	1 3 0.10 1	<u>0.88</u> + 1.2	254 0.736	0.50	3 1.28 3 0.31	3 <u>0.14</u> 12	0.16 14 0.2	2 11 <u>0.65</u> 3 1	1.37 <u>3</u> 0.7	
nplementary OF [24]	6.6	0.11 6	0.28 <mark>5</mark> 0.1	0 10 0.18 1	0.63 <mark>2 0.1</mark> 2	<u>1 0.31</u> ↓ 0.	754 0.181	<u>0.19</u> 2-0.9	75 0.12≰	0.97 <mark>11 1</mark> .3	81 7 1.00 1	1.78	3 1.73 9 0.87	17 0.11 5	0.1230.2	2 11 <u>0.68</u> I	1.48 🖬 0.9	
DPOF verage			Army		,	Mequon			Schefflera		ra	Wooden						
patially vid-point			(Hidden texture)			(Hidden texture)			((Hidden texture)			(Hidden texture)			2		
-L1-impierror		avg.	GT	<u>im0</u>	<u>im1</u>	GT	<u>im0</u>	im1		<u>GT</u> in	<u>n0</u>	<u>im1</u>	G	<u>im0</u>	<u>im1</u>			
CBF [rank	<u>all</u>	<u>disc</u>	<u>untext</u>	all	<u>disc</u>	unte:	<u>t a</u>	<u>l di</u>	SC	<u>untext</u>	<u>all</u>	<u>disc</u>	<u>unte</u> :	<u>a</u> <u>a</u>	
aptive [2	23]		5.2	0.09 1	0.26 1	0.06 1	0.237	0.78	0.18	6 <u>0.5</u>	<u>4 11</u> 1.1	9 13	0.21 5	<u>0.18</u>	0.91	3 0.10	1 <u>0.</u>	
hentary	hentary OF [24]			<u>0.11</u> 6	0.28 5	0.10 10	0.18 1	0.63	0.12	1 <u>0.3</u>	<u>1</u> 40.	75 🕻	0.18 1	<u>0.19</u>	0.97	5 0.12	<u>د 0.9</u>	
Huber-L	Huber-L1 [25]			<u>0.10</u> 3	0.28 5	0.08 3	0.31 14	0.88 1	0.28	15 <u>0.5</u> 1	<u>6</u> 13 1 .1	3 10	0.29 15	0.20	0.92	0.13	7 0.3	
POF [18	POF [18]			0.13 15	0.35	0.095	0.25 8	0.79	0.19	0.2	410.	49 1	0.215	0.19	0.62	1015	13 0	

1st Best Algorithm (7th overall as of 17-12-2009)

DPOF [18]: C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine regiontrees using discrete optimization. ICCV 2009

(3rd overall as of 17-12-2009) 2nd Best Algorithm

Classic+Area [31]: Anonymous. Secrets of optical flow estimation and their principles. CVPR 2010 submission 477

Should use algorithm A

Should use algorithm B

Sky SignSymbol Building Car Tree Fence Sidewalk Pedestrian **ColumnPole** Road

(Artistic version; object-boundaries don't interest us)

Hypothesis:

 that the most suitable algorithm can be chosen for each video automatically, through supervised training of a classifier

Hypothesis:

- that the most suitable algorithm can be chosen for each video automatically, through supervised training of a classifier
- that one can predict the space-time segments of the video that are best-served by each available algorithm
 - (Can always come back to choose a per-frame or per-video algorithm)

Random Forests Breiman, 2001

Groundtruth labels

"Making" more data

Formulation

$$\mathscr{D} = \{ (\mathbf{x}_i, c_i) | \mathbf{x}_i \in \mathbb{R}^d, c_i \in \mathbb{Z}^k \}_{i=1}^n$$

 $\mathbf{x}_{i} = \{g(x, y, [1, z]), d(x, y, [1, z]), t_{x}(x, y, [1, z]), t_{y}(x, y, [1, z]), r(x, y, [1, k])\}$

Training data *G* consists of feature vectors *x* and class labels *c* (i.e. best-algorithm per pixel)

Feature vector x is multi-scale, and includes:

- Spatial Gradient
- Distance Transform
- Temporal Gradient
- Residual Error (after bicubic reconstruction)

Formulation

$$\mathscr{D} = \{(\mathbf{x}_i, c_i) | \mathbf{x}_i \in \mathbb{R}^d, c_i \in \mathbb{Z}^k\}_{i=1}^n$$

 $\mathbf{x}_{i} = \{g(x, y, [1, z]), d(x, y, [1, z]), t_{x}(x, y, [1, z]), t_{y}(x, y, [1, z]), r(x, y, [1, k])\}$

 Training data *D* c and class labels c

$$g(x, y, z) = ||\nabla I_1|$$

Feature vector x is much scale, and menuals.

- Spatial Gradient
- Distance Transform
- Temporal Gradient
- Residual Error (after bicubic reconstruction)

Formulation $\mathscr{D} = \{(\mathbf{x}_i, c_i) | \mathbf{x}_i \in \mathbb{R}^d, c_i \in \mathbb{Z}^k\}_{i=1}^n$ $\mathbf{x}_{i} = \{g(x, y, [1, z]), d(x, y, [1, z]), t_{x}(x, y, [1, z]), t_{y}(x, y, [1, z]), r(x, y, [1, k])\}$ $d(x, y, z) = disTrans(||\nabla I_1|| > \tau)$

- I cature vector a is munti-searc, and merudes.
 - Spatial Gradient
 - Distance Transform
 - Temporal Gradient
 - Residual Error (after bicubic reconstruction)

Formulation Details

Temporal Gradient

$$t_x = ||\nabla(x + \bar{u})||$$

$$t_y = ||\nabla(y + \bar{v})||$$

Residual Error

 $r_i(x, y, k) = I_1(x, y) - bicubic(I_2(x + u_i(k), y + v_i(k)))$

Application I: Optical Flow

Image Sequence	BA	TV	HS	FL	TrivComb	Ours	OptCombo	
		-08	0.549	0.350	0.387	0.344	0.271	
	· · · · · · · · · · · · · · · · · · ·	32	1.329	0.527	0.589	0.603	0.398	
		06	0.772	0.435	0.428	0.436	0.256	
Ours		- 35	0.182	0.096	0.133	0.097	0.074	
		96	0.276	0.164	0.191	0.165	0.123	
		45	0.873	0.622	0.670	0.628	0.466	
		20	0.285	0.170	0.189	0.171	0.111	
FL		- 11	0.171	0.144	0.147	0.147	0.115	
		64	5.195	3.724	4.582	3.748	2.448	
		15	17.891	12.634	17.634	9.607	3.373	
		25	7.129	6.748	7.045	6.791	6.606	
HS		- 868	21.643	22.333	21.784	21.9	20.925	
		31	2.702	0.709	2.177	1.833	0.443	
		42	0.876	0.344	0.389	0.342	0.212	
		10	0.267	0.250	0.221	0.252	0.186	
TV		- 76	0.683	0.403	0.474	0.437	0.368	
		59	8.443	8.607	8.52	8.612	8.11	
		06	1.281	1.021	1.057	0.988	0.762	
		-96	0.464	0.473	0.456	0.467	0.296	
BA		-						
	80							
u zu 40 Total En:	ou e	00						
HS TV BA 0 20 40 Total Ep	÷	$ \begin{array}{c} 64 \\ \overline{15} \\ 25 \\ \overline{368} \\ \overline{31} \\ 42 \\ \overline{10} \\ \overline{76} \\ \overline{59} \\ \overline{06} \\ \overline{96} \\ \overline{368} \\ \overline{31} \\ 42 \\ \overline{10} \\ \overline{76} \\ \overline{59} \\ \overline{06} \\ \overline{96} \\ \overline{368} \\ \overline{31} \\ $	5.195 17.891 7.129 21.643 2.702 0.876 0.267 0.683 8.443 1.281 0.464	3.724 12.634 6.748 22.333 0.709 0.344 0.250 0.403 8.607 1.021 0.473	4.582 17.634 7.045 21.784 2.177 0.389 0.221 0.474 8.52 1.057 0.456	3.748 9.607 6.791 21.9 1.833 0.342 0.252 0.437 8.612 0.988 0.467	2.448 3.373 6.606 20.925 0.443 0.212 0.186 0.368 8.11 0.762 0.296	

_

Application II: Feature Matching

Comparing 2 Descriptions

- What is a match? Details are important...
 - Nearest neighbor (see also <u>FLANN</u>)
 - Distance Ratio
 - PCA

Evaluation: density, # correct matches, tolerance

"192 correct matches (yellow) and 208 false matches (blue)"

SIFT Decision Confidence

Hindsight / Future Work

Current results don't quite live up to the theory:

- Flaws of best-algorithm are the upper bound (ok)
- Training data does not fit in memory (fixable)
- "Winning" the race is more than rank (problem!)

Summary

- Overall, predictions are correlated with the best algorithm for each segment (expressed as Pr!)
- Training data where one class dominates is dangerous – needs improvement
- Other features could help make better predictions
 Results don't yet do the idea justice
- One size does NOT fit all
 - At least in terms of algorithm suitability
 - Could use "bad" algorithms!

Ground Truth Best

Based on Prediction

FlowLib

Based on Prediction

White = 30 pixel end point error

FlowLib

Based on Prediction

(Contrast enhanced)