
Help, It Looks Confusing: GUI Task Automation Through
Demonstration and Follow-up Questions

Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J. Brostow
Computer Science,

University College London,
Gower Street,

London, United Kingdom
{t.intharah, daniyar.turmukhambetov.10, g.brostow}@cs.ucl.ac.uk

ABSTRACT
Non-programming users should be able to create their own cus-
tomized scripts to perform computer-based tasks for them, just
by demonstrating to the machine how it’s done. To that end,
we develop a system prototype which learns-by-demonstration
called HILC (Help, It Looks Confusing). Users train HILC to
synthesize a task script by demonstrating the task, which pro-
duces the needed screenshots and their corresponding mouse-
keyboard signals. After the demonstration, the user answers
follow-up questions.

We propose a user-in-the-loop framework that learns to gener-
ate scripts of actions performed on visible elements of graphi-
cal applications. While pure programming-by-demonstration
is still unrealistic, we use quantitative and qualitative exper-
iments to show that non-programming users are willing and
effective at answering follow-up queries posed by our system.
Our models of events and appearance are surprisingly simple,
but are combined effectively to cope with varying amounts of
supervision.

The best available baseline, Sikuli Slides, struggled with the
majority of the tests in our user study experiments. The pro-
totype with our proposed approach successfully helped users
accomplish simple linear tasks, complicated tasks (monitoring,
looping, and mixed), and tasks that span across multiple exe-
cutables. Even when both systems could ultimately perform a
task, ours was trained and refined by the user in less time.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces- Graphical user interfaces (GUI)

Author Keywords
Programming by Demonstration; GUI Automation; Action
Segmentation and Recognition.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI 2017, March 13–16, 2017, Limassol, Cyprus.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4348-0/17/03 ...$15.00.
http://dx.doi.org/10.1145/3025171.3025176

INTRODUCTION
Millions of man-years are spent laboring in front of computers.
Although some of that work is creative, many tasks are repeti-
tive. Able-bodied users find it increasingly tedious to repeat
a task tens or hundreds of times. Even more severely, users
with special needs can find even a second or third repetition
of a task to be prohibitively hard. We see computer vision in
the domain of desktop and mobile Graphical User Interfaces
(GUIs) as a delicate prerequisite, needed to make effective
virtual personal assistants.

The proposed approach examines the many small and non-
obvious challenges to learning-by-demonstration in a GUI
world. While template-matching of icons and scripting of
macros and bots are low-tech by modern vision standards, we
start with these technologies because they are effective. The
overall contributions of our approach are that:

• Non-programming users can teach a task to our system,
simply by demonstrating it, either on a computer with a
sniffer program or through screencast-video.

• The system asks the human for help if parts of the demon-
strated task were ambiguous.

• The same or other users can run the task repeatedly, giving
them functionality that was previously hard to achieve or
was missing entirely, e.g., looping.

Tasks range from short single-click operations to inter-
application chains-of-events. Our informal surveys revealed
that each user had different tasks they wished to automate, but
they agreed universally that the teaching of a task should not
take much longer than performing the task itself.

With the long-term aim of improving assistive technology, we
separate the role played by the instructor from that of the
end-user. For example, one person could use a mouse and
keyboard (or an eye-tracker) to demonstrate a task and answer
follow-on questions. Then the same or another person could
run that learned task, e.g., using speech. In this paper, we focus
on algorithms to make the instructor effective. Moreover, we
also split off the teacher role from the instructor role to support
diverse demonstration inputs, e.g., video tutorials vs. sniffer
programs.

Through our designated scenarios, we explore three interesting
issues of general Programming by Demonstration systems. For
the linear tasks, we explore script generation; for the looping
tasks, we explore generalization of the generated scripts; and
for the monitoring tasks, we explore invocation of scripts.

Overview of Challenges At a high level, our system collects
observations while the instructor performs a task, then it finds
confusing looking patterns that call for the instructor to give
more input. Once the task is learned and saved as a script, it
can be called up by the end-user to run one or more times, or
to monitor for some visual trigger before running.

A number of challenges make this an interesting technical
problem that relates to object recognition, action recognition,
and one-shot learning. The instructor’s computer can be instru-
mented with a sniffer program, that records mouse/keyboard
events, and screen-appearance. But, for example, a click-drag
and a slow click are still hard to distinguish, and hugely vary-
ing time-scales make sniffed observations surprisingly hard to
classify. We also explore learning of tasks from pre-recorded
screencast videos, which display noisy details of key/mouse
events. Further, clicking someplace like a File-menu usually
means the task calls for that relative location to be a target, but
what if other parts of the screen have similar looking menus?
The teacher can help find visual cues that serve as supporters.

Also, while demonstrating, the instructor runs through a linear
version of the task, and can indicate if some part of the chain
of actions should actually become a loop. Template matching
may reveal that the to-be-looped segment was applied to one
unique target (an icon, a line of text, etc.,), but the system can
request further input to correctly detect the other valid targets
on the screen. This functionality is especially useful when a
looping task must “step” each time, operating on subsequent
rows or columns, instead of repeatedly visiting the same part
of the screen.

RELATED WORK
The problem of learning-by-demonstration in a GUI world has
challenges related broadly to four areas: action recognition
from video, semantic understanding of GUI environments,
analysis of video tutorials, and program synthesis.
Joint Segmentation and Classification of Action:
Hoai et al. [12] proposed an algorithm to jointly seg-
ment and classify human actions in longer video. Most other
action-recognition works just classified pre-segmented clips.
Like Hoai et al., we have unsegmented and long videos.
Shi et al. [21, 20] also segment and classify human actions.
They use a Viterbi-like algorithm for inference, similar to ours,
but they used Hamming distance to measure the loss between
labels of two consecutive frames. Other action-detection
methods tend to be slow and ill-suited for GUI problems.
Semantic Understanding of GUI Environments:
Dixon et al. [7] study models of GUI widgets, e.g.,
buttons, tick boxes, text boxes, etc., and associate parts into
hierarchical models from only visual information. This work
and its extension [8] aim to reverse-engineer GUI widgets to
augment and enhance them. Hurst et al. [13] studied GUI
targets the user can manipulate, for human performance
assessment and software usability analysis. While having an

accessibility API simplifies task-interpretation, it assumes the
softwares’s developers want to invest extra effort. Similarly,
Chang et al. [4] developed an accessibility API based system
which also uses visual analysis to establish the hierarchical
structure of the GUI. This also improved text analysis and
processing. In contrast, we aim to recognize cross-application
actions without access to software internals, mimicking what
a human personal assistant would learn only from observation.
Analysis of Video Tutorials: Grabler et al. [9] presented a
system that generates a photo manipulation tutorial from an
instructor’s demonstration in the GIMP program. The system
generates each step of the tutorial by accessing changes in the
interface and the internal application state. The source code
of GIMP was modified to allow such access. The authors also
proposed preliminary work on transferring operations from
the user demonstration to a new target. Again, this approach
relies heavily on privileged access to one application. Chron-
icle [10] is a system that allows users to explore the history
of a graphical document, as it was created through multiple
interactions. The system captures the relation between time,
regions of interest in the document, tools, and actions. This
rich information allows users to play back the video for a
specific time or region of interest, to replicate the result or to
understand the workflow.

The Pause-and-Play system [19] helps users better learn to
use an application from a video tutorial. The system finds
important events in the video tutorial, and links them with the
target application. This allows the system to automatically
pause the video by detecting events in the application, while
the user is following the steps of the tutorial. However, the
detection of events in an application is implemented again
through the API of that application. The Waken system [2]
processes video tutorials using consecutive frame differences
to locate the mouse cursor and the application widgets on
which the video tutorial is focusing. Moreover, the system
also infers basic widget actions executed by the user, and
characterizes widget behavior. They applied the system to a
tutorial of a video player, allowing users to directly interact
with the widgets in the application. However, this system
mainly relies on pre-designed heuristic rules to detect cursors
and widgets.

EverTutor [22] is a system that processes low-level touch
events and screen-captured images on a smartphone to au-
tomatically generate a tutorial from a user demonstration,
without binding itself to one application. A tutorial gener-
ated by that system can interactively guide the user through
a process. Although this system approaches their problem in
a similar way to our system for processing low-level mouse
and keyboard input events and screen-captured images, their
algorithmic details are omitted.
Program Synthesis Our work is related to two sub-areas of
program synthesis from user inputs: Programming by Demon-
stration and Programming by Example. Our system fits best in
the Programming by Demonstration category. Programming
by Demonstration systems (PbD) have the user perform a task
as an input, and output a computer program that performs that
task. In contrast, Programming by Example systems (PbE)
learn the model from input-output pairs provided by a user,

and generate a computer program that does the task. Although
research on Programming by Demonstration [14, 6] and Pro-
gramming by Examples [11] shows promising results, the
systems usually work within closed ecosystems where PbD
can directly access software states and can manipulate the
state. Automating user interaction with GUI objects, where
working across different ecosystems is one of the most com-
mon scenarios, is still under-developed. The main contribution
of our work is to make a PbD system be domain independent
by relying on Computer Vision techniques rather than an Ac-
cessibility API.

Koala [17] and CoScriptor [16] built platforms to generate
automation scripts and business processes with a loose pro-
gramming approach, and to share the generated process across
an organization. The aim was to personalize a process to a
particular end-user’s needs. Those systems focused only on
web-based processes, since web-page source code is readily
accessible and machine-readable.

Sikuli [23] was the first to provide programmers with an API to
process and interact with desktop applications using computer
vision techniques. This easy-to-use system can interact with
multiple applications and can be run on multiple platforms.
It was extended to many applications [5, 24]. However, the
automation script has to be programmed by the instructor,
hence, Sikuli Slides [1] was developed to simplify the script
generation process to allow less programming-skilled users
to generate automation scripts. Instead of a coded script,
Sikuli Slides represents a process as a Powerpoint presentation
with annotations of basic actions on each of the slides. This
presentation can be executed as a script. Sikuli Slides also
provides a recorder application, so a user records a process
and saves it as a starting draft of the desired presentation. Our
user study compares our framework and this baseline on linear
tasks.

Sheepdog [15, 3] and Familiar [18] are PbD systems that
focus on looping tasks. Our system deals with looping tasks
through a different approach, so instead of requiring multiple
demonstrations, we ask users to demonstrate once and then
give examples of iterators.

LEARNING DEMONSTRATED TASKS
Our system, HILC1, has three phases: demonstration, teach-
ing, and running. First, an instructor can choose to record their
demonstration as either a screencast video (so highlighting
mouse and key presses) or through custom-made sniffer soft-
ware. Both methods have pros and cons, which we discuss
further in the Demonstration Phase section. Next, during the
teaching phase, the system performs joint segmentation and
classification of basic actions. To generalize the observed ac-
tions, we introduce a human teacher (can be the same person
as the instructor) who can help the system refine its pattern
detectors. The challenges and proposed solutions of joint
segmentation and classification, and for human in the loop
training, are in the Teaching Phase section. Finally in the
Running phase, the system performs actions according to the
transcript generated by the instructor and improved by the
teacher. Our system also generates a Sikuli-like script for
1Project page: http://visual.cs.ucl.ac.uk/pubs/HILC/

visualization purposes. A stand-alone runtime script in pure
python is made using the PyAutoGUI package.

To start, we define a set of basic actions that our system can
perform, and our system needs to jointly segment and recog-
nize these actions from the input demonstration. The set of
basic actions is composed of Left Click, Right Click, Double
Click and Click Drag.

DEMONSTRATION PHASE
In this phase, an instructor who knows how to complete the
task demonstrates the task while only recording video or while
running the sniffer program. If the user chooses to record
the task as a video, the system will pre-process the video and
create the unified format log-file from every frame of the video.
On the other hand, if the user chooses to record the task via
a sniffer, the system will record every signal produced by the
user to the unified format log-file.

Recording the Task
For both input methods (video-only or sniffer) we define a
unified sensor-data format. Functioning like a log-file (see
Figure 1), each entry records the screenshot image and the low-
level status of the machine: its mouse button status, mouse
cursor location, and the keyboard’s key press status. A sniffer
can access useful information directly from the OS, but can’t
determine the class of the basic action. It does naturally gen-
erate a log-file from the demonstration. However, one must
take into account time intervals between each log entry, incon-
sistent machine lag, and storage space of screenshots. Detaila
are presented in the Implementation section.

To help the system recognize whether a demonstrated segment
is a linear, looping, or monitoring/standby task, we use special
key combinations that the user was briefed on before using
the system. We use the terms monitoring and standby inter-
changeably and they both refer to the same kind of task. The
details of the recording step and the special key combination
are presented in the User Study Scenarios section.

Although processing a video-only demonstration is slower, it
is more versatile because end-users can leverage pre-recorded
and internet-shared videos as an input demonstrations. How-
ever, processing of demonstration videos has many chal-
lenges, such as locating the mouse cursor, retrieving low-level
mouse/keyboard events from screencast messages, removing
the mouse pointer from the video’s screenshot images (i.e.,
capturing a template of the button without the cursor’s occlu-
sion), and noise/compression in the video recording.

We describe the implementation details of our approach for
coping with the aforementioned issues for both sniffer and
video inputs in the next section.

Figure 1. Example of a log-file which merges our inputs from both video
and sniffer data.

http://visual.cs.ucl.ac.uk/pubs/HILC/

Implementation
The system was implemented in Python 2.7 and it was de-
ployed on Microsoft Windows 7 64-bit machines with Intel
Core i5-3317u @1.70GHz CPU and 8GB of RAM.

We implemented a custom sniffer which records low-level
mouse and keyboard events. Log-file entries and screenshots
were only saved before and after each of the mouse and key-
board status changes, to keep the hard drive i/o from slowing
down the machine. We also re-sample records to have log-files
where the time difference between records is 1000/30 mil-
liseconds, to make sniffer log-files versions agree with video
versions that sample screenshots at 30 frames per second.

Using an existing video as a demonstration requires that we
address two important issues: how can the system retrieve
low-level mouse and keyboard status information, and how
can the system remove the mouse cursor from video frames
for clean pattern extraction?

Video tutorials are commonly recorded with specialized
screencasting software that renders visual indicators of mouse
events, left-right button pressing, and keystrokes. Hence, we
assume that the demonstration video was recorded with key-
casting software. Each key-caster is different, but we trained
for KeyCastOW for Windows and Key-mon for Unix. Others
could easily be added. Thus, we extract key-cast display loca-
tions from the video and recognize the information for each
frame via the OCR software Tessarract. The mouse status
information displayed by the key-cast software is still low-
level, similar to sniffer output.The mouse cursor location is
with by a Normalized Cross Correlation detector of the mouse
pointer template. Videos of demonstrations have an inherent
problem of the mouse cursor occluding a target pattern during
a basic action. To overcome this, we detect significant appear-
ance changes of the screen and use a temporal median filter to
remove the cursor to create a clean mouse-free screenshot.

In the Demonstration Phase, the instructor’s basic actions are
recorded by the system. Hence, to interact with the system, for
example, to start or stop the recording, the instructor triggers
explicit signals. In our implementation, these are special key
combinations. The detection of loops or standby patterns is not
automatic, and has to be flagged by the instructor. Therefore,
we define three special key combinations for the different
signals: End of Recording, Looping, and Standby, which are
discussed in detail before we explain each designated scenario
in the Evaluation and Results section.

TEACHING PHASE
This phase of the system takes as input the log-file from the
Demonstration Phase, and then produces a transcribed script
that consists of a sequence of basic actions. The system work-
flow of the teaching phase is in Figure 15.

Classification and Segmentation of Basic Actions
Although the log-file contains all of the low-level information,
identifying basic actions is not straightforward. For example,
the “left mouse button pressed” status can be present in the
log-file at multiple consecutive entries for a single “Left Click”
basic action. Further, it is ambiguous if a left click is a single
“Left Click” basic action, or a part of thw “Double Click” basic

action. Moreover, variability based on how individual users
interact with the computer via peripheral devices makes it hard
for deterministic rules to distinguish between different basic
actions.This drives the need for training data, though each user
provides only very little.

To create a system that can cope with ambiguities in recog-
nizing basic actions, we treat the problem as a Viterbi path
decoding problem: based on dynamic programming, our algo-
rithm segments and classifies the basic actions concurrently.

Let Y = {y1, ...,yz} be the set of all possible states, with a
label for each temporal segment. x is the observation of a
segment, a feature vector representing part of a basic action.
The unary terms U(y|x) are probability distribution functions
over parts of basic actions, learned from pre-collected training
data, The pairwise terms P(ỹ,y) are the constraints that force
consecutive parts of actions to be assigned to the same basic
action.

Let us define Ak as a basic action made from a sequence of
parts of the action k, Ak = {yk

1,y
k
2, ...,y

k
l } ; |Ak| = l and yk

l is
the last part of Ak. yk

n is a part of the basic action k where n
indicates a status change frame (key frame) in the log-file, e.g.,
a frame where the mouse button status is changed, from press
to release or vice versa. Pairwise term is defined as in Eq 1:

P(yi
v−1,y

j
v) =


+1 if i = j and yi

v−1 follows y j
v

0 if i , j and yi
v is the last

part of Ai

−1 otherwise.

(1)

Learning Probability Distribution Functions One of the
challenges of basic action classification is that each basic
action has a different duration. For example, a “Left Click”
usually spans a few milliseconds in the log-file, but “Click
Drag” may span seconds. Moreover, each basic action also
has its inter-variability in terms of action duration.

Our approach is to train a Hinge-loss Linear SVM for each
basic action using hard negative mining method, where each
SVM may make a prediction on a different time interval. For
an input time interval, we construct a feature vector by com-
puting histograms of frequencies of different encoded records
from the log-file. Each record is encoded by 3 binary low-level
states: the status of each of the mouse buttons, pressing the
left button/ the right button, and whether the mouse is moving.
The feature vector also encodes context information of each
action by adding a histogram of a small time interval after an
action is done. Finally, our feature vector for the Linear SVM
has 4× 23 dimensions, the number 4 is from 3 histograms
of equally divided time interval of an action, note that this is
different from a part of an action yk

n, plus 1 context histogram.

The prediction scores of SVMs are not proportional to each
other, so must be scaled before use within the Viterbi algorithm.
Hence, for each basic action, we train a Random Forest (RF),
that inputs the prediction scores of SVMs as features and
outputs the probability of each basic action class.

For any unknown time interval, we can construct a unary
matrix which maps between a part of action to its probability
distribution from trained RF for that action. The unary matrix
Us× c has the shape (number of states×number key frames in
the input sequences). The number of states is defined as Eq 2

number of states = ∑
Ak∈B
|Ak| , (2)

Please note that, we assign the same probability distribution
to all parts of each basic action.

Annotation of Log-files for Basic Actions To annotate an
unknown log-file, the system detects status change frames in
the log-file and use them as key frames. Records in the log-file
are then grouped into N different time intervals indexed by
the key frames and passed to the trained Random Forests to
construct the unary matrix U . Lastly, we do inference for Y∗,
which is the sequence of yk

n that maximizes Eq 3 using the
Viterbi dynamic programming algorithm, where

Y∗ = argmax
Y∗

N

∑
v=1

(P(yi
v−1,y

j
v)+U(y j

v|xv)) (3)

Interactive Training of Pattern Detectors with Few Exam-
ples
To perform any basic action, the system needs to learn the
appearance of the target of the basic action. For linear tasks,
the system needs to find a single correct location of the target
pattern. However, for looping tasks, the system has to find
multiple correct locations of the targets of the looping task,
and thus the system needs to generalize about the target pat-
tern appearance. In both cases, the target pattern may have
appearance variations. For example the icon of the file may
have moved on the desktop and has a different section of the
wallpaper as its background.

Target patterns can also be categorized into two groups: pat-
terns that are discriminative on their own and patterns that
need extra information to be distinguishable, see Figure 2.
Hence, the system needs to treat each of these possibilities
differently and we also introduce a concept of supporters here.

Supporters The supporters are salience patterns that have cer-
tain offsets to the target pattern. In linear tasks, a spreadsheet
program’s row and column names distinguish similar-looking
cells, e.g., Figure 2(c); or field names distinguish similar look-
ing textboxes, Figure 2(d). In the Running Phase, the system
uses the same technique that is used for detecting the target
pattern, to detect supporters. The target patterns give votes to
each detection location, but supporters give votes to the offset
locations.

Supporters for looping tasks work differently from the sup-
porters for linear tasks, as a fixed offset is not informative for
multiple looping targets. Hence, the supporters for looping
provide x-axis and y-axis offsets to the targets, see Figure 3.
The final result is the average of target pattern detectors and
spatial supporters, see Figure 4.

Follow-up Questions: For different kinds of tasks, the system
asks for help from the teacher differently.

Linear tasks Every basic action of linear tasks has a unique
target. The linear tasks can be executed multiple times, but
each run performs the same task on the same unique targets.
For each basic action of the linear task, the system has to
learn the corresponding target pattern from only one positive
example. To train the detector for the target pattern, the sys-
tem initially performs Normalized Cross Correlation (NCC)
matching with the given positive example on the screenshot
image when the basic action was about to be executed, to
prevent the pattern from changing appearance after the action
executed. If there are false-positive locations with high NCC
score, the system asks the teacher to help the system to distin-
guish between true and false positive examples by providing
a supporter(s). After teachers provide supporters, the system
uses NCC as the detector for both the target pattern and the
supporters. If the teacher does not provide any supporters, the
system assumes that this pattern is distinguishable on its own.
More false positive patches are mined to retrain RF until the
system correctly detects the target location using raw RGB
pixel values of every position in the patch as features, until the
system can distinguish between true positive and false positive
patches.
Looping tasks Looping tasks are a generalization of linear
tasks, so that in the running phase, each run of the task iterates
over a set of targets. For example, a linear task always prints a
unique PDF file in a folder, but a looping task prints all PDF
files in a folder by looping over each PDF file icon.

For looping tasks, the instructor shows the task once on a sin-
gle looping target, but the system needs to repeatedly perform
the task on all looping targets that are similar to the pattern
the instructor, or the teacher, or the end-user had specified. In
the Demonstration Phase, the instructor is asked to show more
than one example of a looping target after demonstrating one
complete iteration of a task. In the Teaching Phase, the system
trains a RF with the provided positive examples, and random
patches as negative examples. Next, the system validates the
RF predictions by asking the teacher to verify predicted posi-
tive and negative examples, and/or add supporters.
Monitoring tasks In monitoring tasks, the system at the Run-
ning Phase perpetually runs in standby, looking for a specified
visual pattern, to invoke the rest of the script. In the Demon-
stration Phase, the instructor indicates when the invocation
pattern appears, then demonstrates the task itself. In the Teach-
ing Phase, the system asks the teacher to indicate which pattern
needs to be detected.

RUNNING PHASE
The main reason we separate the running phase from the
demonstration phase and the teaching phase is that our ul-
timate goal for the system is to help end-users who are non-
regular computer users, and disabled users, to complete tasks
that might be hard for them but easy for others. The separated
system is easy to execute by voice command or any other kind
of triggering methods.

In the running phase, the system sequentially executes each
action of the interpreted sequence of actions from the teaching
phase. When a special signal like Looping or Standby is found,
the system executes the specific module for each signal. The
Running phase’s system flow is shown in Figure 5. For each

(a) (b)

(c) (d)

Figure 2. Target patterns in (a) & (b) are distinguishable on their own. The spreadsheet cells in (c) need row and column names to differentiate between
each other. Text fields in registration forms in (d) can be distinguished by the text field labels. Supporter help distinguish locally ambiguous patterns.

Figure 3. An example of a supporter for a looping task. The table shows
names of characters and actors/actresses of a popular TV show. The
names in each column have similar appearance, so, if the user intended
to loop through one of the columns, marking the column name as a sup-
porter will help the system to distinguish between columns.

normal basic action, the system starts by taking a screenshot
of the current desktop and then looks for the target pattern
and supporters (if available) using the trained detector(s). For
the looping part, after taking a screenshot of the current desk-
top, the system evaluates every position on the screen with
the trained detector RF, and applies the spatial voting from
the supporter(s). After that, the non-maxima suppression and
thresholding are applied respectively to the result, to get the
list of positions to loop over. For the standby task, the system
continuously takes a screenshot of a current desktop and eval-
uates the specified positions whether the target pattern may
appear. When the target pattern is found, the system triggers
the sequence of actions that the instructor designed, and then
proceeds to the standby loop again.

EVALUATION AND RESULTS
We evaluated our algorithm quantitatively through a small user
study, and qualitatively to probe our system’s functionality.
Here, we document just nine use cases, and video of some of
these is in the Supplemental Material. The only viable base-
line PbD system available for comparison is Sikuli Slides[1],
because it too assumes users are non-programmers, and it too
has sniffer-like access to user events. We collected (through a
survey) and prioritized a larger list of scenarios for which our
colleagues would like a virtual personal assistant to complete

a task. We picked scenarios that spanned the different basic
actions, and sampled the space between having just two steps
and up to 17 steps. Here we list the three scenarios tested in
the seven-person user-study, and show its results in Table 1.
Just these three linear tasks were picked because Sikuli Slides
can not handle looping or standby tasks. Further scenarios are
discussed in the qualitative evaluation.

The task in each scenario was assessed in terms of 1) transcrip-
tion accuracy (evaluating classification and segmentation), 2)
task reproduction, i.e., measuring pattern detection general-
ization, and 3) time users took to demonstrate and then refine
the task model. In our studies, four of the participants had no
programming exposure, two had taken a school-level course,
and one was a trained programmer. Participants needed 1.5 -
2 hours because each completed all three tasks under both sys-
tems: they randomly started with either ours or Sikuli Slides,
and then repeated the same task with the other system before
proceeding to the next task. Before using both systems the
users were briefed about the goal of the study as well as how
to for using both systems for 20 minutes. In addition, the users
were shown the videos of the instruction phase for each task
before performing the task to ensure the users understand what
are the tasks.

User Study Scenarios: We evaluate the first three basic sce-
narios (linear tasks) quantitatively against Sikuli Slides and
evaluate monitoring and looping tasks qualitatively.
Linear: Linear tasks are simply linear sequences of actions.
They are the most basic type of task, and run only once. To
record and edit all kinds of tasks, two common steps need to
be done: First, at the end of a task-demonstration, the user
presses the special keys combination Shift+Esc, to indicate
the end of sequence. Second, also in the teaching phase, if
the system cannot clearly distinguish between an input pattern
and the other on-screen content, the system asks the teacher to
click on supporter(s) near that pattern.
1. Mute audio playback (Linear) This simple and short task
was actually non-trivial because the speaker icon in some Win-
dows installations is not unique (Figure 6). Half the users had
to refine the model, which for our system meant adding a sup-
porter. All users produced a working model of this task using
our system, and some users were able to produce a working

(a) (b)
Figure 4. An example of a spatial supporter. Blue boxes are user provided positive examples, red are user provided negative examples, yellow are target
detections, and a green box indicates a user-provided supporter. (a) and (b) demonstrate detection performance without and with a spatial supporter;
red means a high detection score. In (a), the left image shows the heatmap of target detection scores, and right shows detected targets. In (b), the
left image shows the heatmap of target detection and spatial supporter scores, and right shows detected targets. The spatial supporter successfully
suppressed all similar looking patterns under the Character column in heatmap (b) so that the system is able to detect only desired targets under the
Actor/Actress column

Figure 5. Our system workflow for the running phase. The yellow box
indicates user interaction.

Figure 6. The instructor clicked on the
speaker in the green box, but the sys-
tem also detected a similar pattern - the
speaker in the red box. In this situation,
our system asks the teacher for a sup-
porter(s), the yellow box, to help with de-
tecting the intended pattern.

model of the task using Sikuli Slides (the right speaker icon
was correctly selected by chance).
2. Turn on High-Contrast-Mode (Linear) Some visually im-
paired end-users may want to trigger this task through a speech
recognition system. Here, our sighted instructors were ulti-
mately successful using both systems, but the study-supervisor
had to walk users of Sikuli Slides through the extra steps of
re-demonstrating the task and making and editing of screen-
shots to refine that model. This task involves the Click Drag
action, which Sikuli Slides was never able to recognize when
transcribing. Figure 7 illustrates the High-Contrast vs de-
fault desktop modes, and our synthesized script for switching.

Please note that High-Contrast-Mode also modifies the scale
of objects on the screen.

Figure 7. High-Contrast-Mode comparing with Normal Mode and (in
the red box) the transcribed steps of the task demonstrated by our sys-
tem.
3. Remote access with TeamViewer (Linear) This sysad-
min (or mobile-phone testing) task consists of running the
TeamViewer application and logging into another device, us-
ing an ID and password provided in a spreadsheet file. The
teaching phase of the task involves helping the system clarify
ambiguous patterns by adding supporters. We illustrate the
task and the transcribed steps in Figure. 8. Inadvertently, this
task proved impossible for Sikuli Slides users because it in-
volves copy-pasting text, which that system does not capture
keys combination shortcut. One user invented an alternate
version of this scenario (3.2) where she tried to right-click and
use a context menu to copy and paste, but we then realized
that right-clicks are also not captured by Sikuli Slides.

Qualitative Evaluation: The remaining scenarios can not be
addressed using Sikuli Slides because they entail monitoring
or looping tasks. We outline our new capabilities here, along
with qualitative findings, and task illustrations, to better gauge
success.
Monitoring: Monitoring tasks run perpetually and then re-
spond to specific patterns. When the specified pattern is de-
tected, the script triggers the sequence of predefined actions.

In the Demonstration Phase, instructors press the spe-
cial key combination (standby signal), Ctrl+Shift+w or
Ctrl+Shift+PrtScr, to indicate that the pattern, which we want
the system to detect, has appeared. The instructor then per-
forms a desired sequence of actions, such as a linear task.

Figure 8. Steps to complete remote access via TeamViewer. Red lines link
related patterns on the screen with the pattern in the transcript. Please
note that performing the basic action DragTo from and to the same pat-
tern has a similar effect as performing the basic action Click on that pat-
tern. Our system is robust to this type of different-but-interchangeable
action.

There is an extra step in the Teaching Phase, where the system
asks the teacher to indicate where the invocation pattern can
occur (e.g., anywhere, or in the taskbar).
4. Skip YouTube ads (Monitoring) is a standby task that
clicks the text Skip Ad if/when it appears during a YouTube
video. This task illustrates the need for spontaneous responses,
because the Skip Ad advertisement banners appear randomly,
for varying periods of time, ranging from 10 seconds to a few
minutes, during playback of the requested content. Figure 9
demonstrates an example of the Skip ad task.

Figure 9. YouTube Skip Ad. These advertisements show before or dur-
ing a playing video for varying periods of times, and our system success-
fully closes them in Scenario 4, as soon as the text appears.

5. Close YouTube ads (Monitoring) creates a standby script
to close advertisements that may appear, despite various chang-
ing backgrounds, as shown in Figure 10. The first line of the
script directs the system to monitor an area where the given
pattern can appear. When the system detects the pattern, the
system triggers a script, in the second line, to click on that
pattern.

Figure 10. Close-ups of YouTube Ads. These ads appear at the bottom
of a playing video, and our system detects and successfully closes them
in Scenario 5.

Looping: Our system allows a loop to be a step in a linear
action, or to be a stand-alone script. Looping tasks are the
tasks that execute the same sequences of linear actions multiple
times on similar looking yet different objects.

To indicate the start and stop of a loop, the demonstrator
inputs the looping signal key combination Ctrl+Shift+l or
Ctrl+Shift+Break, before and after performing one sequence
of actions that need to be repeated. Thereafter, the instructor
gives examples of patterns that needed to be a starting point of
the loop by pressing a Ctrl key while clicking on an example
pattern. When the instructor is happy with the examples, they
then input the looping signal once more. The script can be
followed by linear actions or can finish right after the third
looping signal.

The teaching phase of a looping task has one additional step.
The system displays the result of the trained Random Forest,
and lets the teacher add positive examples, remove false posi-
tive results and provide supporters. This triggers re-training.
6. Create slides out of jpgs folder (Looping) The task is to
create a presentation where each slide features one image from
a given folder. To create the script, a demonstrator only shows
how to create one slide from one jpg, and gives a few examples
of what the jpg file-icon looks like. In the running phase, the
system steps through all the jpg files in a given folder, making
each one into a separate slide of the LibreOffice Impress pre-
sentation. Not only does this show that the system can loop,
the task also demonstrates that the system can help the user
complete repeated steps across different applications (Libre-
Office Impress and Windows Explorer). We show an example
screen of the task and the generated script in Figure 11.

Figure 11. Scenario 6: create slides from folder full of images. The gen-
erated script is shown in the red frame. The system starts by building
a list of locations that will be the starting points for each iteration. The
list is formed by the Trained RF, which trained and refined in the teach-
ing phase with a few examples stemming from the demonstration phase.
The system then iteratively executes a sequence of actions from line three
to five (DragTo, Click, Click). In this scenario, the two applications are
displayed side-by-side.

7. Create spreadsheet of filenames (Looping) The purpose
of this scenario is to create a list of filenames in a spreadsheet
program, Figure 12. In the running phase, the system copies
the filenames from within a given folder into successive Mi-
crosoft Excel cells. While repeatedly successful, the paste
operation targeted the cell below the previously-selected (dark
outline) cell on the spreadsheet. So the first entry will always
be pasted below the initially selected cell.
8. Create BibTex from spreadsheet (Looping) This is the
most complex of all the scenarios listed here. The task involves
switching between three different applications (eight different
screens). An instructors needs to plan out the task’s steps,
to ensure each application is in a state that is ready for the

Figure 12. Two application’s screens from Scenario 7, where file names
are being collected into a spreadsheet. The script of the task, in the red
frame, involves switching back and forth between the two applications,
and pasting the text into similar-looking cells.

same action of the next loop to be executed. In the running
phase, the system works through an Excel file that lists titles
of papers that should be cited. The system then uses Google
Scholar to look for the BibTex of each paper, and produces a
single BibTex file listing all the citations using the Notepad
program. Figure 13 illustrates the generated script.
9. Move MSWord files to a folder (Looping-Video) In this
scenario, we tested a further proof of concept of our system.
The system successfully uses only video from a screencast as
input, instead of data from the sniffer, illustrating that instruc-
tors could post how-to-videos online, which can then easily be
refined into a working script.

The scenario starts by executing a sequence of linear basic
actions to create a new folder. It then continues to iteratively
Drag and Drop each Microsoft Word file into the newly created
folder. The script is shown in Figure 14.

DISCUSSION AND FUTURE WORK
The two sets of evaluation scenarios showed that our approach
substantially extends the programming by demonstration func-
tionality that was available to non-programming users of
desktop-automation tools. The main innovation is the sanity-
check performed when the instructor demonstrates their task:
given a cooperative human, it allows the system to transition
from a winner-takes-all template-matching view of targets and
actions, onto a supervised-classification interpretation of the
instructor’s intentions.

This prototype has important opportunities for improvements.
Basic actions are occasionally misclassified, when none of

Figure 13. A synthesized script of Scenario 8, where a BibTex file is
automatically constructed from a list of paper titles. Three different
desktop GUI’s were involved. The user was able to train the system
quite easily, and can just ran the task without further instructions when
writing their next research paper.

them has a high probability. Tests showed the joint segmenta-
tion and classification algorithm has an average accuracy of
95.4% for classifying each basic action. Our system allows
users to fix misclassified actions instead of requiring a user to
re-record the instruction again. Users were more successful
and could do more with our system, but found the concept
of supporters somewhat foreign, at least as presented in our
instructions.

Currently, the system works without the awareness of states
of the computer. For example, if a task expects to work with a
pre-opened folder (or to open a closed one), the end-user must
prepare their desktop appropriately. In addition, we insert short
fixed-length sleep() after each action to account for loading
time of the computer because the system cannot know if the
OS task has finished/ web-page has loaded. Therefore, shorter
sleeps would make automated tasks go faster, but could ask
for actions before the GUI is ready. This could be addressed
in the future by train the system to recognize computer states
from visual signals. Finally, the current appearance models
have fixed size and aspect ratio, which can hurt accuracy when
items in a list are short and wide. Learned appearance features,
even spanning across devices, could emerge, given enough
training footage.

ACKNOWLEDGMENTS
We thank all the volunteers, and all reviewers, who provided
helpful comments on previous versions of this paper. Au-
thors gratefully acknowledge the Ministry of Science and
Technology of Thailand Scholarship and the EPSRC grants
EP/K023578/1 and EP/K015664/1.

Basic Actions + Typing

Sc
en

ar
io

C
lic

k

C
lic

k
D

ra
g

D
ou

bl
e

C
lic

k

R
ig

ht
C

lic
k

Ty
pi

ng

Transcription Reproduction
Training Time

VS
Refining Time (average)

Sikuli
Slides Our Sikuli

Slides Our Sikuli
Slides Our

1 (Linear) 2 0 0 0 0 3 3 3* 3 10s/49s 10s/27s
2 (Linear) 6 1 0 0 0 3* 3 3** 3 27s/10m 27s/170s
3 (Linear) 11 0 0 0 4 3* 3 7 3 40s/∞ 40s/4m

3.2 (Linear) 13 0 0 4 0 3* 3 7 3 37s/∞ 37s/7m
4. (Monitoring) 1 0 0 0 0 7 3 7 3 N/A 10s/5.5m
5. (Monitoring) 1 0 0 0 0 7 3 7 3 N/A 12s/6.9m

6. (Looping) 2x 1x 0 0 0 7 3 7 3 N/A 35s/10m
7. (Looping) 4x 2x 0 0 4x 7 3 7 3 N/A 60s/6.6m
8. (Looping) 9x 0 0 0 8x 7 3 7 3 N/A 86s/12.5m

9. (Looping-Video) 4 1x 0 2 0 7 3 7 3 N/A 25s/22m

Table 1. User study on our system compared to Sikuli Slides. Scenario 3.2 is an alternative way to perform Scenario 3, without pressing shortcut key
combinations that Sikuli Slides is known to be missing. Nevertheless, we eventually realized that Sikuli Slides isn’t detecting the right click actions either.
(3= successful, 3* = partially successful, 3** = can be successful with guidance from the operator, 7= can not succeed at the task at all). x represents
the number of repeated loops needed to complete the task. Please note that 90% of the refining time for Task 9 is offline - devoted to the time spent on
processing video to produce the log-file.

Figure 14. The system successfully use videos as input of the system, in-
stead of generating the input log-file from the sniffer, to create a working
script. Please note that the system failed to remove mouse pointer from
the target patterns in the first and the seventh lines.

Figure 15. Our system workflow for the teaching phase. The yellow
boxes indicate where the system poses questions to the teacher.

REFERENCES
1. 2014. Sikuli Slides. http://slides.sikuli.org/. (2014).

Accessed: 14th October, 2016.

2. Nikola Banovic, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2012. Waken : Reverse Engineering
Usage Information and Interface Structure from Software
Videos. UIST ’12 (2012), 83–92.

3. Vittorio Castelli, Lawrence Bergman, Tessa Lau, and
Daniel Oblinger. 2010. Sheepdog, Parallel Collaborative
Programming-by-Demonstration. Knowledge-Based
Systems (2010).

4. Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011.
Associating the Visual Representation of User Interfaces
with Their Internal Structures and Metadata. UIST ’11
(2011), 245.

5. Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller.
2010. GUI Testing Using Computer Vision. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (2010), 1535–1544.

6. Allen Cypher and Daniel Conrad Halbert. 1993. Watch
What I Do: Programming by Demonstration. MIT press.

7. Morgan Dixon, Daniel Leventhal, and James Fogarty.
2011. Content and Hierarchy in Pixel-Based Methods for
Reverse Engineering Interface Structure. Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (2011), 969.

8. Morgan Dixon, A. Conrad Nied, and James Fogarty.
2014. Prefab Layers and Prefab Annotations: Extensible
Pixel-Based Interpretation of Graphical Interfaces. UIST

’14 (2014), 221–230.

9. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating Photo
Manipulation Tutorials by Demonstration. ACM
Transactions on Graphics 28, 3 (2009), 1.

10. Tovi Grossman, Justin Matejka, and George Fitzmaurice.
2010. Chronicle: Capture, Exploration, and Playback of
Document Workflow Histories. UIST ’10 (2010),
143–152.

11. Sumit Gulwani. 2016. Programming by Examples (and
Its Applications in Data Wrangling). In Verification and
Synthesis of Correct and Secure Systems. IOS Press.

12. Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre.
2011. Joint Segmentation and Classification of Human
Actions in Video. Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (2011),
3265–3272.

13. Amy Hurst, Scott E Hudson, and Jennifer Mankoff. 2010.
Automatically Identifying Targets Users Interact with
During Real World Tasks. IUI ’10 (2010), 11–20.

14. Tessa Lau and others. 2008. Why PBD Systems Fail:
Lessons Learned for Usable AI. In CHI 2008 Workshop
on Usable AI.

15. Tessa Lau, Lawrence Bergman, Vittorio Castelli, and
Daniel Oblinger. 2004. Sheepdog: Learning Procedures
for Technical Support. IUI ’04 (2004).

16. Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter : Automating & Sharing How-To
Knowledge in the Enterprise. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(2008), 1719–1728.

17. Greg Little, Tessa A. Lau, Allen Cypher, James Lin,
Eben M. Haber, and Eser Kandogan. 2007. Koala:
Capture, Share, Automate, Personalize Business
Processes on the Web. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(2007), 943–946.

18. Gordon W Paynter. 2000. Automating Iterative Tasks
with Programming by Demonstration. (2000).

19. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications. UIST ’11
(2011), 135–144.

20. Qinfeng Shi, Li Cheng, Li Wang, and Alex Smola. 2011.
Human Action Segmentation and Recognition Using
Discriminative Semi-Markov Models. International
Journal of Computer Vision 93, 1 (2011), 22–32.

21. Qinfeng Shi, Li Wang, Li Cheng, and Alex Smola. 2008.
Discriminative Human Action Segmentation and
Recognition Using Semi-Markov Model. 26th IEEE
Conference on Computer Vision and Pattern Recognition
(2008).

22. Cheng-Yao Wang, Wei-Chen Chu, Hou-Ren Chen,
Chun-Yen Hsu, and Mike Y Chen. 2014. EverTutor:
Automatically Creating Interactive Guided Tutorials on
Smartphones by User Demonstration. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (2014), 4027–4036.

23. Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller.
2009. Sikuli: Using GUI Screenshots for Search and
Automation. UIST ’09 (2009), 183–192.

24. Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh,
Ivan Watkins, Krist Wongsuphasawat, Man Huang,
Larry S. Davis, and Benjamin B. Bederson. 2011.
Creating Contextual Help for GUIs Using Screenshots.
UIST ’11 (2011), 145.

http://slides.sikuli.org/

	Introduction
	Related Work
	Learning Demonstrated Tasks
	Demonstration Phase
	Recording the Task
	Implementation

	Teaching Phase
	Classification and Segmentation of Basic Actions
	Interactive Training of Pattern Detectors with Few Examples

	Running Phase
	Evaluation and Results
	Discussion and Future Work
	Acknowledgments
	References

