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ABSTRACT
Game and player analysis would be much easier if user in-
teractions were electronically logged and shared with game
researchers. Understandably, sniffing software is perceived
as invasive and a risk to privacy. To collect player analytics
from large populations, we look to the millions of users who
already publicly share video of their game playing. Though
labor-intensive, we found that someone with experience of
playing a specific game can watch a screen-cast of someone
else playing, and can then infer approximately what buttons
and controls the player pressed, and when. We seek to auto-
matically convert video into such game-play transcripts, or
logs.

We approach the task of inferring user interaction logs from
video as a machine learning challenge. Specifically, we pro-
pose a supervised learning framework to first train a neural
network on videos, where real sniffer/instrumented software
was collecting ground truth logs. Then, once our DeepLogger
network is trained, it should ideally infer log-activities for
each new input video, which features gameplay of that game.
These user-interaction logs can serve as sensor data for gaming
analytics, or as supervision for training of game-playing AI’s.
We evaluate the DeepLogger system for generating logs from
two 2D games, Tetris [23] and Mega Man X [6], chosen to
represent distinct game genres. Our system performs as well
as human experts for the task of video-to-log transcription,
and could allow game researchers to easily scale their data
collection and analysis up to massive populations.

CCS Concepts
•Computing methodologies → Video summarization; Su-
pervised learning by classification; •Human-centered
computing → Interaction design theory, concepts and
paradigms;
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INTRODUCTION
To capture a player’s experience means watching them, prob-
ing them with different scenarios, and interviewing them to
understand how they felt in the game and afterward. Game
analytics and large scale game evaluations are also important,
to supplement such careful analysis of individual players. But
practical constraints influence the balance between these kinds
of depth vs breadth analyses. For example, when studying how
players experience different game levels, important insights
about play-tuning and interfaces come from both small focus-
groups, and global-scale cohorts of players. When available,
just the log files themselves provide invaluable insights [33,
26, 25, 27]. Critically, the sampled population size for each
study is partly a question of time and cost.

The focus of this paper is to make the millions of hours of
recorded gameplay videos usable, for each game’s analytics
and game-user research. In short, we seek to automatically
convert each video into a log-file transcript, as if the player had
used sniffer software while playing a known game. Privacy
concerns and OS security, especially on mobile devices, keep
gamers from generating and sharing log files of their game
play. But millions of players are comfortable sharing videos
online. On YouTube, there are 2.3m and 7.8m search result
videos for The Legend of Zelda: Breath of the Wild [10],
and PlayerUnknown’s Battlegrounds [11], respectively, after
the games were released for only 12 months. Twitch.tv is a
website expressly for live streaming videos of games, which
has 2m unique players broadcasting every month. Until now,
that rich data was hard to interpret.

We introduce DeepLogger, a Convolutional Neural Network
(CNN), that is custom-built to generate player-computer in-
teraction log-files from gameplay videos. An example of its
intended use would be to collect information about a specific
game, and how players do better/worse depending on whether
they play using a keyboard, game controller, or a particular
mobile phone model. A DeepLogger CNN would first be
trained by a cooperative game-player. She would record video
and key/button logs on a computer with a sniffer program
installed. The trained DeepLogger could then be run on each
of the 103 . . .106 relevant gameplay videos of that game. The
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resulting log files could reveal trends and advantage-giving
interfaces. Additionally, for interface-researchers who don’t
own the game’s copyright or code, they can avoid the copy-
right infringement risks that sometimes go along with building
emulators [9].

Figure 1. Classical titles: Tetris from Nintendo Entertainment System
(NES) and Mega Man X from Super Nintendo Entertainment System
(SNES) are used in our experiments. Cover art © Nintendo Co., Ltd.

The proposed network is evaluated on a spectrum of quantita-
tive metrics, through different scenarios: training and testing
on different players’ videos, different levels, and different
video encoders. We picked two classic games from two pop-
ular console systems: Tetris (NES) [23] and Mega Man X
(SNES) [6] as our test cases, shown in Figure 1.

Both obvious and unexpected challenges are set out in the
next section. These are challenges faced by both humans and
baseline networks, as they try to convert a video into a log
file. The rest of the paper works through our solutions, and
evaluation criteria for validating the DeepLogger approach.

RELATED WORK
We briefly summarize two different branches that relate to our
own work. First, we discuss projects where different gam-
ing log-files served as the main input data to studies of user
behavior and gameplay experiences. Second, we highlight
machine learning projects that treat computer games as experi-
mental platforms. Where feasible, these establish a connection
between machine learning algorithms and computer game
analytics research.

Understanding Game Users Through Log-files
A log-file records information as a stream of events or mes-
sages. Log files have been used extensively in game user
research to extract important or hidden information of gamers’
emotions or behavior. Here, we touch on some of the many
research projects that utilize gaming log-files (with a variety
of content) as initial sources of information to extract analytics
and better understand player experiences.

Shuteet al. [26, 25, 27] analyze user interaction logs in their
stealth assessment of digital games for education. Stealth
assessment is an assessment made from the interaction data
collected during gameplay sessions. The assessment is not
noticeable by the users/learners. [8] uses customized game
log data to generate video summarizations of what happened
during gameplay. In [31], Tveit et al. proposed using a player’s

action log-files from Massive Multiplayer games to mine for
user patterns of behavior. Zaman and MacKenzie [33] use user
input logs and game logs to evaluate different input devices
for touchscreen phones. Nacke et al. [21, 22] study the use of
game session logs and game event logs to assess game player
experience, and to better understand the gameplay itself. Smith
and Nayar [29] successfully model user’s play style from the
user’s raw controller inputs using Latent Dirichlet Allocation
(LDA).

While these works use log information as a core input com-
ponent, we are unaware of any practical tool that allows re-
searchers to retrieve such information from publicly shared
gameplay videos. To the best of our knowledge, the closest
research which aims to extract game information log from
gameplay video is Marczak et al.work [18]. This work ex-
tracts gameplay metrics such as health bar and in-game items
by simple hand-coded image processing techniques. We, how-
ever, propose a system to allow researchers to automatically
extract raw control input information from existing videos.
This should speed up our research community’s ability to
work with very large datasets, without conducting extremely
laborious and costly data collection processes.

Using Machine Learning in Computer Game Research
Several attempts to probe Artificial Intelligence (AI) agents in
the context of computer games played by humans are made
recently through advancements in Machine Learning (ML)
research, and through newly available platforms. To allow the
AI and ML research communities to validate their algorithms,
a variety of games has been used. Each presents its own
challenges, with platform specifically chosen or custom-made
by these researchers to more easily plug in their AI and ML
algorithms as required. We highlight several of these well
known platforms.

OpenAI Gym [5] and ALE [3] provide environments for com-
puter agents to play Atari 2600 games and many flash games.
VizDoom [16] and DeepMind Lab [2] provide API’s which
allow AI and ML agents to learn to play classical first person
shooter (FPS) games, e.g. Doom and Quake III respectively.
Recently, RLE [4] was proposed to be an environment for
SNES games, and Project Malmo [15] is an environment for
the game Minecraft.

These encourage ML research to develop new agents, e.g.
through Reinforcement Learning. Some examples are [12]
for Tetris and [20] for Mario; Deep Reinforcement Learning
agents: [17, 7, 24] for Doom, [19] for Atari games, and Neu-
ralKart [13] for Mario Kart 64; and Supervised Learning agent:
TensorKart [14] for Mario Kart 64.

DeepLogger is a tool intended to complement these works,
by allowing researchers to train their Machine Learning algo-
rithms on human gameplay videos, in addition or in contrast
to having these agents learn only by self-play.

BASELINES AND CHALLENGES THEY FACE
We start by illustrating the performance of human gamers
when asked to estimate what buttons were pressed during the
middle frame of a short video clip of someone else’s gameplay.



Tetris Human DeepLogger
Single-label Accuracy 0.8400±0.00 0.7885
Multi-Label Accuracy 0.8400±0.00 0.7911
F1-score (Example-based) 0.8644±0.00 0.8882
F1-score (Label-based) 0.7794±0.02 0.5691

Mega Man X Human DeepLogger
Single-label Accuracy 0.2250±0.18 0.5356
Multi-Label Accuracy 0.4420±0.20 0.7060
F1-score (Example-based) 0.5936±0.19 0.8325
F1-score (Label-based) 0.4722±0.18 0.5363

Table 1. The performance of both human experts and the proposed
DeepLogger system, on estimating a gamer’s controller inputs (the log)
from gameplay videos only: Tetris and Mega Man X. The criteria (rows)
are explained in the text, but higher accuracies and F1 scores are bet-
ter. Humans are better with Tetris videos, while DeepLogger does better
with Mega Man, possibly due to the UI complexity.

We then discuss the challenges faced by both a human and the
automated systems, as we attempt to generate interaction logs
from videos.

Baseline: Human Performance
In this section, we analyze how people fare, when estimating
user input logs from gameplay videos. The small user study
was conducted online, with 8 gamers recruited to participate.
The gamers were first screened, selecting only those gamers
who had experience playing Tetris and Mega Man X. In ques-
tionnaires, the gamers had to answer 50 questions for each
of the two games. Each question displays a short video clip
(Figure 2), randomly extracted from our gameplay videos. We
ask the user to select all the check-boxes for game-control
buttons that they think were pressed in the short video clip.

Figure 2. An example video clip of Tetris gameplay, with check-boxes
for a user to indicate what buttons they think were pressed at the middle
frame. While this is a demanding and time-consuming task, users were
fairly successful when “transcribing” Tetris.

Table 1 summarizes our human subjects’ and previews
DeepLogger’s performance on the task of predicting input
logs from video. We can see that the system performs better
than human experts on a harder game like Mega Man X where
there are many possible button-combinations, but it performs
worse than human experts on Tetris, a game that is visually
easier to decipher, with fewer possible button-combinations.

(a)

(b)
Figure 3. Button-combination Frequencies for Tetris (a) and Mega Man
X (b). For Tetris, the dominant input is Idle (nothing pressed), followed
by three main buttons: Down, Left, and Right. For Mega Man X, the
two main classes are Idle and Shoot, followed by the “Right and Shoot”
combination.

Challenge: Class Imbalance
Class imbalance happens when some controls or button-
combinations are used more often than others. See button-
combination statistics for Tetris and Mega Man X in Figure 3.
It is quite common for game logs to have substantial imbal-
ance. For instance, in a side-scrolling game such as Mega Man
X, the character progresses by moving steadily right, so other
direction-controls are pressed less often.

Substantial class imbalance, as found here, severely impacts
the training of machine learning systems, and colors the per-
formance metrics. For example, if one button combination
occurs 90% of the time, and the training optimization focuses
on subset accuracy (no partial credit for imperfect key com-
binations), then regardless of input, the network will simply
always predict that one combination.

In the Architecture Section, we give the details of training our
CNN while accounting for imbalanced data, and set out the
performance metrics used throughout this paper.

Challenge: Multiple Control Buttons Per Record
For each time step, gamers can and tend to press multiple
control keys at once. This leads to many possible unique
button-combinations. For NES, eight control buttons can gen-
erate 82 combinations. For SNES, twelve control buttons can
generate 122 combinations, though “select” and “start” are
rarely pressed, leaving 102 most of the time.



Notation: Q is the number of input buttons. x is the input
of our classifier, so in practice, a short gameplay video clip.
Instead of a single output y, Y is the classifier’s output vector,
representing the state of all the controller buttons. Y ′ is the
ground truth label associated with x.

Our CNN would normally be trained using a standard multi-
class loss function H,

HY ′(Y ) :=−
Q

∑
q

Y ′qlogY ∗q , (1)

that compares the ground truth output vector Y ′ to the softmax
output tensor of the network Y ∗. Y ∗ is

softmax(Yq) :=
eY

q

∑
Q
q eYq

. (2)

Training our CNN by minimizing the normal multi-class loss
(1) will not work here for two reasons. First, if each button
is a disjoint class, then the loss will encourage the CNN to
treat each button as mutually exclusive of others, discouraging
chords. Second, if we consider each button-combination as
a class, the network will not be able to predict classes that
weren’t present in the training set.

The Losses section in our Architecture description details
how our multi-label loss and multi-label-multi-choice loss are
designed to cope with these problems.

Challenge: Many-to-One
This is a problem that we did not anticipate, and it may surprise
readers who have not analyzed interaction logs. In most games,
there are times when pressing two different buttons (or button-
combinations) produces the same in-game result. We refer to
these situations as functionally equivalent, or as many-to-one
situations. Figure 4 depicts the confusion statistics of our two
sample games.

This challenge is the obstacle that most affects human perfor-
mance on the video-to-log task. We consider a multi-button-
combination as a single class label, for simplicity.

Many-to-one happens when many classes generate one output.
For example, when the game is unresponsive, no matter which
keys are pressed, the subsequent frames are the same. To
account for video examples with more than one associated
label, we propose the multi-label-multi-choice loss, to tackle
the problem. The result is analyzed in Result: Many-to-One
section.

ARCHITECTURE
Convolutional Neural Networks (CNN’s) have proved success-
ful in a wide range of applications, especially on computer
vision tasks such as image classification. We devise a new
CNN architecture for transcribing user input logs from videos
of gameplay, by combining existing CNN components and
carefully choosing appropriate training procedures to tackle
gameplay video challenges. Moreover, a new loss function,
multi-label-multi-choice loss, is proposed to tackle the many-
to-one challenges, described in the Challenge: Many-to-One

(a)

(b)
Figure 4. Functionally equivalent button-combinations for Tetris, shown
in (a), and Mega Man X shown in (b), are visualized through confusion
matrices. Each numerical entry indicates how many times the button-
combination (of that row) produces the same visual output as another
button-combination (column).



section. The network is implemented in Tensorflow [1]. The
dataset and the codes can be found at the project page.1 It is
worth to note here that all the network setting: the number of
convolution and fully connected layers as well as dropout ratio
and learning rate were achieved empirically through a number
of experiments which are omitted in this paper.

The Network
Our DeepLogger network is composed of five 3D convolu-
tional layers, each of which has rectified linear units (ReLU) as
activation functions. The network then has five fully connected
layers with dropout between layers. Table 2 demonstrates the
diagram of our proposed CNN network.

Layers Kernel Dimensions Number of kernels
Input input dimensions = D×1×W×H
Conv1 3×5×5 24
Conv2 3×5×5 36
Conv3 3×5×5 48
Conv4 3×3×3 64
Conv5 3×3×3 64
Dense6 output dimensions = 1164
Dropout keep = 0.8
Dense7 output dimensions = 100
Dropout keep = 0.8
Dense8 output dimensions = 50
Dropout keep = 0.8
Dense9 output dimensions = 30
Dropout keep = 0.8
Output output dimensions = C

Table 2. Diagram of the proposed DeepLogger Network where D is
the number of frames per clip, which are 21 frames and 11 frames for
Tetris and Mega Man X respectively. W×H are the image dimensions
of the gameplay videos, which are the default screen dimensions of NES,
256×224 for Tetris, and SNES, 586×448 for Mega Man X. C is the num-
ber of buttons, with 8 buttons for Tetris and 12 buttons for Mega Man
X.

3D convolution layers
In this work, we deem a video as a stack of temporal 2D
images (frames). Before passing each frame to the network,
the RGB frame is transformed into a grayscale image. While
2D convolution layers look at a whole temporal block at a time
which does not consider relations between consecutive frames
and the frames order, 3D convolution layers look at smaller
temporal blocks. In Table 2, “Conv” are 3D convolution layers.
The temporal dimension of each layer is set to 3 which means
that the network is restricted to consider temporal relations of
every three consecutive frames of the given temporal block.

Training
Since user input log data is extremely imbalanced, as shown
in Figure 3, we train the network by over-sampling all other
classes. The effect is that in each mini-batch, the non-majority
classes (button-combinations) have comparable numbers of
samples to the majority class.

We chose ±5 and ±10 consecutive frames per short clip, as
one data point for Mega Man X and Tetris respectively. The
1http://visual.cs.ucl.ac.uk/pubs/DeepLogger/

network is trained with the mini-batch scheme using batch
size 16 for 50 epochs. We use 1E-5 as our fixed learning rate
for both games.

We compare and discuss the imbalanced training procedure
with the normal training procedure on both games in the Ex-
periments section.

Losses
As discussed in Challenge: Multiple Control Buttons Per
Record, each input button can be pressed at the same time and
pressing one button is independent of pressing another button.
We frame this problem as the multi-label problem where each
class can occur independently. To train a multi-label NN
classifier, sigmoid cross entropy loss is used:

HY ′(Y ) :=−∑Y ′qlog(σ(Yq)), (3)

where σ(†) = 1
1+e† is the result of applying the sigmoid func-

tion to the output of the network.

However, an extremely challenging characteristic of gameplay
video is the many-to-one issues are not yet addressed; and from
our inspection of the training data, these situations happen a
lot, as shown in figure 4.

To tackle the issues, we modify the sigmoid cross entropy
loss to consider multiple label choices. When there are more
than one class (button-combination) which generates the same
visual output as another class, functionally equivalent class,
the loss should not penalize those classes even if they are not
the ground truth label.

To make our network aware of that, we generate a new ground
truth by replaying the emulator with the ground truth input
logs and checking which button-combination is functionally
equivalent to the ground truth label. By doing that, the new
ground truth label for each example become a set of labels.
We call it multi-choice labels.

The modified loss is designed to consider each ground truth
label as a set. It the looks for the best label from those label
set, and computes multi-label loss against that label. We name
this loss multi-label-multi-choice loss. The multi-label-multi-
choice loss is mathematically defined as

HY′(Y ) := min
Y ′∈Y′

(−∑Y ′qlog(σ(Yq))), (4)

where Y′i is a multi-choice ground truth label of example i.

EXPERIMENTS AND RESULTS
In this section, we discuss experiments which were used to
validate different components of the network, as well as the
whole system’s performance. Table 3 demonstrates the key fig-
ures from the CNN experiments. DeepLogger is our proposed
network; DeepLogger2D is the modified version of our pro-
posed network to validate performance of using 3D filters in
the convolutional layers; the VGGNet [28] is a baseline CNN
due to its broad acceptance in the computer vision community.

Data
We collected the datasets of both Tetris and Mega Man X
using the BizHawk Emulator version 2.1.1. Gamers for each
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Tetris DeepLogger (-balanced) DeepLogger2D (-balanced) VGGNet [28] (-balanced)
Single-label Accuracy 0.7885 (0.7735) 0.5712 (0.6558) 0.6386 (0.6558)
Multi-Label Accuracy 0.7911 (0.7735) 0.5734 (0.6558) 0.6298 (0.6553)
F1-score (Example-based) 0.8882 (0.8754) 0.7675 (0.7921) 0.7841 (0.7921)
F1-score (Label-based) 0.5691 (0.1865) 0.0874 (0.0000) 0.03907 (0.0000)

Mega Man X DeepLogger (-balanced) DeepLogger2D (-balanced) VGGNet [28] (-balanced)
Subset Accuracy 0.5356 (0.6014) 0.4126 (0.5088) 0.2730 (0.4480)
Multi-Label Accuracy 0.7060 (0.7459) 0.6135 (0.6901) 0.5151 (0.6400)
F1-score (Example-based) 0.8325 (0.8587) 0.7740 (0.8278) 0.7179 (0.7970)
F1-score (Label-based) 0.5363 (0.4352) 0.3578 (0.3149) 0.2866 (0.2616)

Table 3. Performance of 3 CNN’s: DeepLogger, DeepLogger2D, and VGG on Tetris and Mega Man X. Figures in parentheses indicate performance of
the networks when they were trained without over-sampling the non-majority classes.

game were recruited to play the game multiple times. For
Mega Man X, we use one playthrough recoded from one
gamer as our training data and another recoded playthrough
from the same gamer as the test data. For Tetris, the net-
work was trained on twenty gameplay recordings of one level
from one gamer; and the test data comprises of gameplay
recordings of three different levels and two additional gamers.
BizHawk records user control inputs at each time step for
each gameplay, in a log-file which can be played back later.
We use this user input log, Yi and the associated screenshot
image, imi, to construct the training data for our model. For
our training data, one data point is a clip of 2n+1 frames,
xi = {imi−n, imi−n+1, ..., imi, ..., imi+n−1, imi+n}, where n = 5
for Mega Man X and n = 10 for Tetris.

The data is split into 80% training set, 5% for the validation set,
and 15% test set, which amounts to 316,848 training examples
for Tetris and 436,203 training examples for Mega Man X.

Performance Metrics
We benchmark the performance of our system over a range of
different metrics [34]. All metrics and their characteristics

Single-label Accuracy Subset Accuracy is a performance
metric that captures the fraction of perfectly correct predic-
tions. This performance metric only counts as correct the
predictions where Y is identical to the ground truth for all
buttons/controls. This metric is similar to the accuracy of the
single-label problem.

Multi-label Accuracy evaluates the fraction of correctly clas-
sified labels in the multi-label setting. It returns 1 if the pre-
dicted set of input buttons is identical to the ground truth,
similar to the subset accuracy above, but it returns non-zero
numbers if the predicted result is partly correct, so if some
of the input buttons match. This metric allows us to analyze
more fine-grained performance measurements of the classi-
fiers, because it gives partial credit.

Example-based F1-Score measures the harmonic mean of
Precision and Recall, where it first evaluates the performance
of each example separately, and then returns the average value
across the test set. Precision and Recall are complimentary per-
formance measurements to Accuracy, because they take into
account class imbalance, via false positive and false negative
statistics.

Label-based F1-Score computes an F1-score by first evaluat-
ing the performance of each class label input button separately,
and then returning the average value across all class labels,
where every class label is given equal weight (Macro average).

Although the Example-based F1-Score is good for being sensi-
tive to imbalanced data, it can be misled by very large numbers
of test examples. Label-based F1-Score, instead, focuses on
measuring the performance of predicting individual class la-
bels for each input button.

Result: Overall Results
Table 3 presents the performance of the DeepLogger network
on Tetris and Mega Man X. It is clear that DeepLogger has
better performance across all four criteria, at least as compared
to the 2D alternate version of DeepLogger, and against VG-
GNet [28], which is a standard architecture used in thousands
of computer vision tasks. We touch on the numerical results
below, with respect to the different challenges identified at the
outset.

Figure 5 and Figure 6 demonstrate detailed analysis of how
the network performs on per button and per class (button-
combination) predictions. For Tetris, the per button accuracy
chart (a) suggests that the class rotate block clockwise and
class rotate block counter-clockwise are harder for the net-
work to distinguish than the classes which translate the block.
This leads to poor performance on the button-combination
prediction, where the classes have both direction and rotation
buttons being pressed. For Mega Man X, the per button accu-
racy chart (b) indicates that the network always made mistakes
at predicting the button X because this button does not map
to any action, Also, the network got relatively low scores on
the button L because L and R are sliding the inventory window
left and right respectively, and there is no visual distinction
between the two.

Result: Class Imbalance
We trained three different CNN architectures with/without
over-sampling the non-majority classes, to balance the number
of examples from each class of button-combinations. The
results are listed in Table 3 where training with the over-
sampling scheme is shown first, and results after training
without the over-sampling scheme are shown in parentheses.
From the table, we see that for Mega Man X, training with the
over-sampling scheme can cause a slight performance drop on
three metrics: single-label accuracy, multi-label accuracy, and



(a)

(b)
Figure 5. Detailed analysis of our DeepLogger network’s performance
on Tetris for per button and per class prediction. (a) shows the perfor-
mance of per button prediction and (b) shows the performance of per
class prediction. In both cases, rotation is the hardest to recognize. Small
red X’s on the per button accuracy chart indicate there is no ground
truth label for the buttons (Up and Select).

example-based F1-score. However, the over-sampling scheme
always improves the label-based F1-score.

Result: 2D VS 3D Filters
This experiment demonstrates the benefit of using 3D filters
for predicting an action from a sequence of images. The
performance of two identical network where one uses 3D
convolutional layers (DeepLogger) and another that uses 2D
convolutional layers (DeepLogger2D) are shown in Table 3.
Please note that, VGGnet [28] also uses 2D convolutional
layers.

For both games, we can clearly see that for predicting user
inputs from gameplay video, 3D convolutions significantly
improve the performance of the CNN’s across all metrics.

Result: Many-to-One
Figure 7 shows the improvement in score when training with
multi-label-multi-choice loss, compared to training with ordi-
nary sigmoid cross entropy loss.

To generate a multi-choice label from a normal single-choice
input log, we rely here (only) on an emulator. We replay the
recorded user input logs through the emulator, where at each
subsequent time step, we try all possible button-combinations,
looking for ones that generate the same visual output as the
original single-label. These functionally equivalent (at least
in the short-term) extra combinations are added to the list of
multi-choice labels, supplementing the original ground truth.

(a)

(b)
Figure 6. Detailed analysis of our DeepLogger network’s performance
on Mega Man X for per button and per class prediction. (a) shows the
performance of per button prediction and (b) shows the performance
of per class prediction. Binary labels in (b) along the horizontal axis
represent pressing (1) and not pressing (0) that game controller button
and The Binary codes preserve the button-order from (a). Red X’s on
the per button accuracy chart indicate there is no ground truth label for
the buttons (R and Select).

Figure 7. Comparing loss functions. This bar-chart compares two
DeepLogger networks using four performance metrics. For the red bars,
the network was trained with normal multi-label loss, and for the blue
bars, the network was first trained with normal multi-label loss on 90%
of the training data, and then fine-tuned with multi-label-multi-choice
loss on the remaining 10% of the training data. This bar-chart is gener-
ated from the Tetris gameplay dataset. Under each measure, fine-tuning
with multi-label-multi-choice loss yielded better scores.

This process takes substantial time per gameplay log-file, so
figure 7 only reports the performance when we fine-tune the
network with multi-choice-multi-label loss on 10% of the
training data. This process is trivially parallelizable if needed.



Tetris Base Diff 1 level Diff 2 levels Diff Gamers Diff Encoder
Single-label Accuracy 0.7885 0.7251 0.7988 0.7228 0.7633
Multi-Label Accuracy 0.7911 0.7269 0.8017 0.7235 0.7649
F1-score Example-based 0.8882 0.8489 0.8870 0.8441 0.8743
F1-score Label-based 0.5691 0.4529 0.5504 0.4137 0.6690

Table 4. Generalization evaluation. Base is the performance of the system when testing on gameplay video from the same level, gamer, and encoder.
Diff 1 level shows the performance of the system when testing with gameplay videos from a different level than the training data, by 1 level, Diff 2 levels
tests the same thing, but where the difference is 2 levels. Diff Gamers level shows the performance of the system when testing with gameplay videos from
different gamers. Diff Encoder level shows the performance of the system when testing gameplay videos downloaded from video-sharing site YouTube,
where compression and frame-rate changes can occur.

Result: Generalization
Table 4 shows experiments where the network is validated on
further challenging tasks: training on one person’s gameplay
videos and then testing on another person’s, training on one
level and then testing on different levels, and training with
locally collected video, and then testing on different videos
that were encoded by YouTube and downloaded back again,
as if scraped.

Result: CNN Embedding
This secondary benefit of our system has some interesting op-
portunities. Figure 8 visualizes what is learned by the network.
We can see that the network learns to ignore or at least tolerate
the background of the screenshots, and focuses on the main
character action.

While the estimated logs are the main focus of this paper, the
neural network’s ability to embed “similar” frames near each
other in feature space is valuable for other kinds of analytics.
For example, a researcher could search, across all recorded
gameplay of one or many users, for situations where the game
takes a certain turn, or the player performs a certain chain
of actions. These would correspond to points in the CNN’s
abstract feature space, but could be found more reliably than,
say, using the absolute time passed from the start of a level
- different players move at different speeds. Also, the same
game played across different devices may have different logs,
but the appearance part of interesting in-game situations will
be comparatively consistent.

DISCUSSION AND CONCLUSION
We have shown that it is possible to extract UI log information
from gameplay videos. While the accuracy of our system
still has room for improvement, compared with the 100% one
would get from using sniffer software, our system could be
applied to the millions of users’ videos that are generated each
month. Preserving users’ privacy while collecting broad-scale
usage statistics has a value that is presently hard to measure.
Additionally, the CNN-embedding gives researchers new op-
portunities to compare gameplay across game levels and across
players. This is similar to the opportunity DeepLogger may
present for AI researchers who want to train game-playing
AI’s, without relying purely on self-play.

Our proposed network, along with the learning algorithm that
finds functionally equivalent user commands, outperforms the
baseline networks in Table 3. Presently, it performs on par
with what humans can do when focusing their attention, as
shown in Table 1. It seems from the Mega Man X experiments

that human performance is not a ceiling on accuracy or F1
scores (people are slightly worse on Mega Man X), but further
machine learning developments are needed to improve on
those metrics.

The current network can only predict user input logs for a game
where training data is available. In further work, it would be
attractive to learn from many games, to try to generalize across
games, increasing the pool of available training data.

Due to we frame the problem as a classification problem,
the system is limited to games with discrete inputs. Further
work on transcribing games with continuous inputs is worth
exploring because modern games tend to use continuous inputs
such as mouse trajectory, gyroscope, or gestures.

Last but not least, in future work it would be interesting to
extend the network to work with multi-player games. For
2-player games which each of their two controllers is fixed to
the certain part of the screen, such as Super Mario Kart [30],
or fixed to a certain character, such as Contra [32], the network
might need only a little tweak to work. However, the more
challenging research topic is to transcribe the games of which
the controllers are not fixed to a certain aspect.



Figure 8. The graph visualizes Euclidean distances between embedding features, produced by the "Dense9" layer of the network, for the query clip and
other clips from different videos. Min1, Min2, and Min3 clips are examples of the clips which have the smallest distances to the query clip. The Y-axis
represents distance and X-axis represents time steps in the video of the retrieved gameplay.
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